

### AYDIN ADNAN MENDERES UNIVERSITY COURSE INFORMATION FORM

| Course Title                                     | Numerical Soluti                                           | umerical Solution of Differential Equations                                                                                                                                                                                                                                                                                                                                                                                                               |              |                |                                |                |         |  |
|--------------------------------------------------|------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|----------------|--------------------------------|----------------|---------|--|
| Course Code                                      | MTK527                                                     | Couse Lev                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Couse Level  |                | Second Cycle (Master's Degree) |                |         |  |
| ECTS Credit 7                                    | Workload 17                                                | 75 (Hours) Theory                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3            | Practice       | 0                              | Laboratory     | 0       |  |
| Objectives of the Cour                           | equations. Stude<br>and relation betw<br>topics used at th | This course aims to acquaint students with the basic knowledge of numerical solution of some differential equations. Students will be familiar with classification of equations initial and boundary value problems and relation between Volterra and Fredholm integrals. They may easily understand the features of topics used at the area of information other courses. They will be able to make applications related to biology, and other sciences. |              |                |                                |                |         |  |
| Course Content                                   | method And Ada                                             | IATLAB and integral th<br>ams methods, Linear a<br>ty of Multi-step method                                                                                                                                                                                                                                                                                                                                                                                | nd Nonlinea  |                |                                |                |         |  |
| Work Placement                                   | N/A                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |                |                                |                |         |  |
| Planned Learning Activities and Teaching Methods |                                                            | thods Explanation                                                                                                                                                                                                                                                                                                                                                                                                                                         | n (Presentat | ion), Discussi | on, Individual                 | Study, Problem | Solving |  |
| Name of Lecturer(s)                              | Res. Assist. İclal                                         | GÖR                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              |                |                                |                |         |  |

## **Assessment Methods and Criteria**

| Method              | Quantity | Percentage (%) |    |
|---------------------|----------|----------------|----|
| Midterm Examination |          | 1              | 30 |
| Final Examination   |          | 1              | 50 |
| Assignment          |          | 1              | 20 |

#### **Recommended or Required Reading**

- 1 Clay C. Rose, (2004), Differential Equations, Springer, second edition.
- 2 B. R. Hunt, R. L. Lipsman, J. E. Osborn, J. M. Rosenberg, (2005), Differential Equations with MATLAB

| Week | Weekly Detailed Cours | I Course Contents                                                                              |  |  |  |  |  |
|------|-----------------------|------------------------------------------------------------------------------------------------|--|--|--|--|--|
| 1    | Theoretical           | Introduction of MATLAB and differential equations                                              |  |  |  |  |  |
| 2    | Theoretical           | Ordinary differential equations., Initial and boundary value problems and solution of methods, |  |  |  |  |  |
| 4    | Theoretical           | Numerical solution of IVP and Volterra integral equations                                      |  |  |  |  |  |
| 5    | Theoretical           | Local truncation errors and order of convergence                                               |  |  |  |  |  |
| 6    | Theoretical           | Linear and non-linear differential equations                                                   |  |  |  |  |  |
| 7    | Theoretical           | Single step methods for differential equations                                                 |  |  |  |  |  |
| 8    | Intermediate Exam     | Midterm exam                                                                                   |  |  |  |  |  |
| 9    | Theoretical           | Linear and Nonlinear Volterra integral equations of the second kind                            |  |  |  |  |  |
| 10   | Theoretical           | Numerical stability of Single step methods                                                     |  |  |  |  |  |
| 11   | Theoretical           | Taylor series and Runge-Kutta methods                                                          |  |  |  |  |  |
| 12   | Theoretical           | Butcher table and Runge-Kutta method And Adams methods                                         |  |  |  |  |  |
| 13   | Theoretical           | Numerical stability analysis of Multi-step methods                                             |  |  |  |  |  |
| 14   | Theoretical           | Stability Analysis                                                                             |  |  |  |  |  |
| 15   | Theoretical           | Stability Analysis                                                                             |  |  |  |  |  |
| 16   | Final Exam            | FINAL EXAM                                                                                     |  |  |  |  |  |

#### **Workload Calculation**

| Activity            | Quantity | Preparation | Duration | Total Workload |
|---------------------|----------|-------------|----------|----------------|
| Lecture - Theory    | 14       | 3           | 3        | 84             |
| Assignment          | 1        | 10          | 2        | 12             |
| Midterm Examination | 1        | 32          | 2        | 34             |



|        | motion | Form  |
|--------|--------|-------|
| Course |        | FUIII |
|        |        |       |

| Final Examination                       | 1 | 43 | 2 | 45 |  |  |
|-----------------------------------------|---|----|---|----|--|--|
| Total Workload (Hours)                  |   |    |   |    |  |  |
| [Total Workload (Hours) / 25*] = ECTS   |   |    |   |    |  |  |
| *25 hour workload is accepted as 1 ECTS |   |    |   |    |  |  |

| Learn | ing Outcomes                                                                                 |
|-------|----------------------------------------------------------------------------------------------|
| 1     | To be able to comprehend the importance of the some basic concepts of the integral equations |
| 2     | To be able to write numerical programming with MATLAB.                                       |
| 3     | To be able to design numerical quadrature.                                                   |
| 4     | To be able to implement Butcher table and their algorithms.                                  |
| 5     | To be able to use mathematical concepts in solving certain types of problems                 |

#### **Programme Outcomes** (Mathematics Master)

| rogi | anime Outcomes (Mathematics Master)                                                                                                                                                                                         |  |  |  |  |  |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| 1    | To be able to have an adequate theoretical and practical domain knowledge.                                                                                                                                                  |  |  |  |  |  |
| 2    | To be able to comprehend the interdisciplinary interaction associated with Mathematics.                                                                                                                                     |  |  |  |  |  |
| 3    | To be able to use theoretical and practical domain knowledge gained in the field of Mathematics.                                                                                                                            |  |  |  |  |  |
| 4    | To be able to interpret knowledge from different disciplines integrating knowledge in the field of mathematics and produce new information.                                                                                 |  |  |  |  |  |
| 5    | To be able to define, analyse, model and to solve the problems by scientific methods in Mathematics.                                                                                                                        |  |  |  |  |  |
| 6    | To be able to conduct a math related specialistic study independently.                                                                                                                                                      |  |  |  |  |  |
| 7    | To be able to develop new strategic approaches to solve problems occurred in unforeseen and complex math-related applications by taking responsibility.                                                                     |  |  |  |  |  |
| 8    | To be able to lead in situations that require solving problems related to the mathematics.                                                                                                                                  |  |  |  |  |  |
| 9    | To be able to criticize his/her knowledge and skills acquired in the field mathematics.                                                                                                                                     |  |  |  |  |  |
| 10   | To be able to transfer his/her ideas and suggestions for solutions to problems by supporting quantitative or qualitative data verbally and in writing.                                                                      |  |  |  |  |  |
| 11   | To be able to communicate both orally and written in a foreign language.                                                                                                                                                    |  |  |  |  |  |
| 12   | To be able to use computer hardware and information technologies with software required by Mathematics.                                                                                                                     |  |  |  |  |  |
| 13   | To be able to contribute to the solution of the social, scientific, cultural and ethical problems related to the Mathematics, and being able to support the development of social, scientific, cultural and ethical values. |  |  |  |  |  |
| 14   | To be able to develop mathematics-related strategies, policies and operational plans, and to evaluate the results obtained within the framework of quality processes.                                                       |  |  |  |  |  |
| 15   | To be able to use his/her knowledge in the field of mathematics and practical problem-solving skills in interdisciplinary studies                                                                                           |  |  |  |  |  |

# Contribution of Learning Outcomes to Programme Outcomes 1: Very Low, 2: Low, 3: Medium, 4: High, 5: Very High

|     | L1 | L2 | L3 | L4 | L5 |
|-----|----|----|----|----|----|
| P1  | 3  | 4  | 4  | 4  | 4  |
| P2  | 3  | 4  | 4  |    |    |
| P3  | 3  | 4  | 4  | 4  | 4  |
| P4  | 3  | 4  | 4  |    | 4  |
| P5  |    | 4  | 4  |    |    |
| P7  |    | 4  | 4  |    | 4  |
| P12 | 3  |    |    | 5  | 4  |
| P15 | 4  | 4  | 4  | 3  | 3  |

