

AYDIN ADNAN MENDERES UNIVERSITY COURSE INFORMATION FORM

Course Title	Divergent Series I						
Course Code	MTK552	Couse Le	vel	Second Cycle	e (Master's I	Degree)	
ECTS Credit 7	Workload 175 (Hou	rs) Theory	3	Practice	0	Laboratory	0
Objectives of the Course The aim of this course is to introduce well known summability methods.							
Course Content	Abel convergence, Cesa Toeplitz theorem, Nörlur and Borel exponential tra	d and Nörlund	d type transf	formations, Höl	ormula, Abe der and Ces	I's inequality, the S saro means, Euler,	ilverman- Taylor
Work Placement N/A							
Planned Learning Activities	Explanation	on (Presenta	ation), Discussi	on, Individu	al Study, Problem	Solving	
Name of Lecturer(s)							

Assessment Methods and Criteria				
Method	Quantity	Percentage (%)		
Midterm Examination	1	30		
Final Examination	1	50		
Assignment	1	20		

Reco	mended or Required Reading	
1	Divergent Series, G. H. Hardy	
2	Summability theory and applications, R.E. Powell and S.M. Shah	

Week	Weekly Detailed Course Contents				
1	Theoretical	Abel convergence			
	Preparation Work	Relevant part of course book should be read			
2	Theoretical	Cesaro convergence			
	Preparation Work	Relevant part of course book should be read			
3	Theoretical	Euler-Maclaurin sum Formula			
	Preparation Work	Relevant part of course book should be read			
4	Theoretical	Abel's inequality			
	Preparation Work	Relevant part of course book should be read			
5	Theoretical	Silverman-Toeplitz theorem			
	Preparation Work	Relevant part of course book should be read			
6	Theoretical	Silverman-Toeplitz theorem			
	Preparation Work	Relevant part of course book should be read			
7	Theoretical	Nörlund and Nörlund type transformations			
	Preparation Work	Relevant part of course book should be read			
8	Theoretical	Nörlund and Nörlund type transformations			
	Preparation Work	Relevant part of course book should be read			
9	Preparation Work	Relevant part of course book should be read			
	Intermediate Exam	Midterm Exam			
10	Theoretical	Hölder and Cesaro means			
	Preparation Work	Relevant part of course book should be read			
11	Theoretical	Hölder and Cesaro means			
	Preparation Work	Relevant part of course book should be read			
12	Theoretical	Euler, Taylor and Borel exponential transformations			
	Preparation Work	Relevant part of course book should be read			
13	Theoretical	Euler, Taylor and Borel exponential transformations			
	Preparation Work	Relevant part of course book should be read			
14	Theoretical	Hausdorff means			
	Preparation Work	Relevant part of course book should be read			

15	Theoretical	Hausdorff means
	Preparation Work	Relevant part of course book should be read
16	Final Exam	Final Exam

Workload Calculation				
Activity	Quantity	Preparation	Duration	Total Workload
Lecture - Theory	14	3	3	84
Assignment	1	10	2	12
Midterm Examination	1	32	2	34
Final Examination	1	43	2	45
	175			
[Total Workload (Hours) / 25*] = ECTS				7
*25 hour workload is accepted as 1 ECTS				

Learn	ng Outcomes
1	To be able to see the relationships among the several summability methods
2	To be able to develop the capacity of posing and solving problems
3	To be able to gain the skill of interpreting some interrelations among these concepts
4	To be able to use mathematical concepts in solving certain types of problems
5	To be able to develop analytical skills and apply to problems

Progr	amme Outcomes (Mathematics Master)
1	To be able to have an adequate theoretical and practical domain knowledge.
2	To be able to comprehend the interdisciplinary interaction associated with Mathematics.
3	To be able to use theoretical and practical domain knowledge gained in the field of Mathematics.
4	To be able to interpret knowledge from different disciplines integrating knowledge in the field of mathematics and produce new information.
5	To be able to define, analyse, model and to solve the problems by scientific methods in Mathematics.
6	To be able to conduct a math related specialistic study independently.
7	To be able to develop new strategic approaches to solve problems occurred in unforeseen and complex math-related applications by taking responsibility.
8	To be able to lead in situations that require solving problems related to the mathematics.
9	To be able to criticize his/her knowledge and skills acquired in the field mathematics.
10	To be able to transfer his/her ideas and suggestions for solutions to problems by supporting quantitative or qualitative data verbally and in writing.
11	To be able to communicate both orally and written in a foreign language.
12	To be able to use computer hardware and information technologies with software required by Mathematics.
13	To be able to contribute to the solution of the social, scientific, cultural and ethical problems related to the Mathematics, and being able to support the development of social, scientific, cultural and ethical values.
14	To be able to develop mathematics-related strategies, policies and operational plans, and to evaluate the results obtained within the framework of quality processes.
15	To be able to use his/her knowledge in the field of mathematics and practical problem-solving skills in interdisciplinary studies.

Contribution of Learning Outcomes to Programme Outcomes 1:Very Low, 2:Low, 3:Medium, 4:High, 5:Very High

	L1	L2	L3	L4	L5
P1	4	4	4	4	4
P3	5		5	5	5
P5	4	4	4	4	4
P7		4	4	4	4
P9	4		4	4	4
P15		2	2	2	2

