

AYDIN ADNAN MENDERES UNIVERSITY COURSE INFORMATION FORM

Course Title		Hyperbolic Geometry								
Course Code		MTK556		Couse Level		Second Cycl	Second Cycle (Master's Degree)			
ECTS Credit	8	Workload	200 (Hours)	Theory	3	Practice	0	Laboratory	0	
Objectives of the Course			The purpose of this course is to present the students with the subjects in the course content at the graduate level							
Course Content		hyperbolic pla	ne, Möbius tra perbolic area	ansformat	tions, the gi	oup of isometrie	s of the hype	geodesics, isomet rbolic plane and it other models of th	s discrete	
Work Placement		N/A								
Planned Learning Activities and Teaching Methods		Methods	Explana	tion (Prese	ntation), Discuss	ion, Individua	al Study, Problem	Solving		
Name of Lecturer(s)										

Assessment Methods and Criteria

Method	Quantity	Percentage (%)	
Midterm Examination	1	30	
Final Examination	1	50	
Assignment	1	20	

Recommended or Required Reading

1	Ande	erson	, J. (199	9) Hyp	erbo	olic (Geon	∩etry,	Sprin	ger.
•	0.00		(4000)	~				-		

2	Stillwell J.	(1992)	Geometry o	f surface	s, Springer

Week	Weekly Detailed Cours	se Contents				
1	Theoretical	Hyperbolic metric				
2	Theoretical	Hyperbolic plane and models				
3	Theoretical	Geodesics				
4	Theoretical	Möbius transformations				
5	Theoretical	Isometries of the hyperbolic plane				
6	Theoretical	The group of isometries of the hyperbolic plane and its discrete subgroups				
7	Theoretical	Fuchsian groups				
8	Intermediate Exam	MIDTERM EXAM				
9	Theoretical	Fundamental regions				
10	Theoretical	Hyperbolic polygons				
11	Theoretical	Hyperbolic area and the Gauss-Bonnet formula				
12	Theoretical	Hyperbolic trigonometry				
13	Theoretical	Hyperbolic trigonometry				
14	Theoretical	Other models of the hyperbolic plane				
15	Theoretical	Other models of the hyperbolic plane				
16	Final Exam	FINAL EXAM				

Workload Calculation

Activity	Quantity	Quantity Preparation		Total Workload				
Lecture - Theory	14	3	3	84				
Assignment	1	20	2	22				
Midterm Examination	1	40	2	42				
Final Examination	1	50	2	52				
	200							
[Total Workload (Hours) / 25*] = ECTS								
*25 hours workload is accounted as 4 ECTO								

*25 hour workload is accepted as 1 ECTS

1	To be able to explain the concepts of hyperbolic plane and hyperbolic metric
2	To be able to explain the upper half plane and the unit disc model and the corresponding metrics
3	To be able to explain the isometries of the hyperbolic plane
4	To be able to explain the discrete subgroups of the group of isometries of the hyperbolic plane
5	To be able to explain the other models of the hyperbolic plane

Programme Outcomes (Mathematics Master)

logi	
1	To be able to have an adequate theoretical and practical domain knowledge.
2	To be able to comprehend the interdisciplinary interaction associated with Mathematics.
3	To be able to use theoretical and practical domain knowledge gained in the field of Mathematics.
4	To be able to interpret knowledge from different disciplines integrating knowledge in the field of mathematics and produce new information.
5	To be able to define, analyse, model and to solve the problems by scientific methods in Mathematics.
6	To be able to conduct a math related specialistic study independently.
7	To be able to develop new strategic approaches to solve problems occurred in unforeseen and complex math-related applications by taking responsibility.
8	To be able to lead in situations that require solving problems related to the mathematics.
9	To be able to criticize his/her knowledge and skills acquired in the field mathematics.
10	To be able to transfer his/her ideas and suggestions for solutions to problems by supporting quantitative or qualitative data verbally and in writing.
11	To be able to communicate both orally and written in a foreign language.
12	To be able to use computer hardware and information technologies with software required by Mathematics.
13	To be able to contribute to the solution of the social, scientific, cultural and ethical problems related to the Mathematics, and being able to support the development of social, scientific, cultural and ethical values.
14	To be able to develop mathematics-related strategies, policies and operational plans, and to evaluate the results obtained within the framework of quality processes.
15	To be able to use his/her knowledge in the field of mathematics and practical problem-solving skills in interdisciplinary studies.

Contribution of Learning Outcomes to Programme Outcomes 1: Very Low, 2: Low, 3: Medium, 4: High, 5: Very High

	L1	L2	L3	L4	L5
P1	2	2	2	2	2
P2	4	4	4	4	4
P3	3	3	3	3	3
P4	2	2	2	2	2
P5	1	1	1	1	1
P9	3	3	3	3	3
P14	2	2	2	2	2
P15	1	1	1	1	1