AYDIN ADNAN MENDERES UNIVERSITY COURSE INFORMATION FORM

Recommended or Required Reading

1 Herbert Schildt, Gregory L. Guntle, Herb Schildt, Borland C++ Builder: The Complete Reference, 2001
2 I. Karagülle ve Z. Pala, Borland C++ Builder, Türkmen Kitabevi, 2002

Week	Weekly Detailed Course Contents	
1	Theoretical	Visual programming setup
2	Theoretical	Programming languages and user interface
3	Theoretical	Programming languages and user interface
4	Theoretical	Using form
5	Theoretical	Using form
6	Theoretical	Form events
7	Theoretical	Form events
8	Theoretical	Constants
9	Theoretical	Project I
10	Theoretical	Variables
11	Theoretical	Operators
12	Theoretical	Control structures and loop structures
13	Theoretical	Arrays. Menus
14	Theoretical	Project II
15	Theoretical	Project II
16	Final Exam	Final Exam

Workload Calculation

Activity	Quantity	Preparation	Duration	Total Workload
Lecture - Theory	14	3	3	84
Project	1	10	2	12
Midterm Examination	1	32	2	34
Final Examination	1	2	43	45
Total Workload (Hours)				- 175
[Total Workload (Hours) / 25*] = ECTS				7

*25 hour workload is accepted as 1 ECTS

Learning Outcomes

1 To be able to use software development tools

2	To be able to design software that can be used for scientific researches
3	To be able to define some concepts which are essential in his/her field
4	To be able to gain the skill of interpreting some interrelations among these concepts
5	To be able to use concepts in solving certain types of problems

Programme Outcomes (Mathematics Master)
1 To be able to have an adequate theoretical and practical domain knowledge.
2 To be able to comprehend the interdisciplinary interaction associated with Mathematics.
3 To be able to use theoretical and practical domain knowledge gained in the field of Mathematics
To be able to interpret knowledge from different disciplines integrating knowledge in the field of mathematics and produce new information.
5 To be able to define, analyse, model and to solve the problems by scientific methods in Mathematics

To be able to develop new strategic approaches to solve problems occurred in unforeseen and complex math-related applications by taking responsibility.
8 To be able to lead in situations that require solving problems related to the mathematics.
9 To be able to criticize his/her knowledge and skills acquired in the field mathematics.
To be able to transfer his/her ideas and suggestions for solutions to problems by supporting quantitative or qualitative data verbally and in writing.
11 To be able to communicate both orally and written in a foreign language.
12 To be able to use computer hardware and information technologies with software required by Mathematics.
To be able to contribute to the solution of the social, scientific, cultural and ethical problems related to the Mathematics, and being able to support the development of social, scientific, cultural and ethical values.
To be able to develop mathematics-related strategies, policies and operational plans, and to evaluate the results obtained within the framework of quality processes.
15 To be able to use his/her knowledge in the field of mathematics and practical problem-solving skills in interdisciplinary studies.

Contribution of Learning Outcomes to Programme Outcomes 1:Very Low, 2:Low, 3:Medium, 4:High, 5:Very High

	L1	L2	L3	L4	L5
P2	2	2	2	2	2
P3	2	2	2	2	2
P11	2	2	2	2	2
P12	5	5	5	5	5
P15	4	4	4	4	4

