

AYDIN ADNAN MENDERES UNIVERSITY COURSE INFORMATION FORM

Course Title Differentiable Manifolds II							
Course Code	MTK578	Couse Leve	Couse Level		Second Cycle (Master's Degree)		
ECTS Credit 8	Workload 200 (Hours) Theory	3	Practice	0	Laboratory	0
Objectives of the Course The main purpose of this course is to acquaint students with knowledge.			wledge of Diff	erentiable Manifo	ld and to		
Course Content Submanifolds, The Lie algebra of v Theorems, Tangent bundle, Gauss						e manifolds, Stok	es
Work Placement N/A							
Planned Learning Activities and Teaching Methods Expl			(Presenta	tion), Discussio	on, Individual	Study, Problem S	Solving
Name of Lecturer(s)							

Assessment Methods and Criteria					
Method	Quantity	Percentage (%)			
Midterm Examination	1	30			
Final Examination	1	50			
Assignment	1	20			

Reco	mmended or Required Reading	
1	Boothby, William M. An Introduction to Differentiable Manifolds and Riemannian Geometry. Academic Press, New York, 1975	
2	Brickell, F., Clark, R. Differentiable manifolds, Windson House, Condon S.W.1	

Week	Weekly Detailed Course Contents			
1	Theoretical	Define manifold		
2	Theoretical	Construct the topology of a manifolds		
	Preparation Work	Solve the problems and examples		
3	Theoretical	The Lie algebra of vector fields on a manifold		
	Preparation Work	Solve the problems and examples		
4	Theoretical	Differentiable maps between manifolds		
	Preparation Work	Solve the problems and examples		
5	Theoretical	Integration on the manifolds		
	Preparation Work	Solve the problems and examples		
6	Theoretical	Stokes Theorems		
	Preparation Work	Solve the problems and examples		
8	Theoretical	Differentiation on Riemannian Manifolds		
	Preparation Work	Solve the problems and examples		
9	Theoretical	Tangent bundle		
	Preparation Work	Solve the problems and examples		
10	Theoretical	Curvature		
	Preparation Work	Solve the problems and examples		
11	Intermediate Exam	Midterm		
12	Theoretical	Gauss and mean curvature		
	Preparation Work	Solve the problems and examples		
13	Theoretical	Structure equation		
	Preparation Work	Solve the problems and examples		
14	Theoretical	Solve the problems about what he has learn		
15	Theoretical	Solve the problems about what he has learn		
	Preparation Work	Solve the problems and examples		
16	Final Exam	Final exam		

Workload Calculation						
Activity	Quantity	Preparation	Duration	Total Workload		
Lecture - Theory	14	3	3	84		
Assignment	1	20	2	22		
Midterm Examination	1	40	2	42		
Final Examination	1	50	2	52		
Total Workload (Hours)						
[Total Workload (Hours) / 25*] = ECTS						
*25 hour workload is accepted as 1 ECTS						

Learn	ing Outcomes	
1	To be able to define differentiable manifold	
2	To be able to define Lie algebra of vector fields on a ma	nifold
3	To be able to acquire Integration on the manifolds	
4	To be able to acquire Tangent bundle	
5	To be able to acquire Gauss and mean curvature	

Progr	ramme Outcomes (Mathematics Master)
1	To be able to have an adequate theoretical and practical domain knowledge.
2	To be able to comprehend the interdisciplinary interaction associated with Mathematics.
3	To be able to use theoretical and practical domain knowledge gained in the field of Mathematics.
4	To be able to interpret knowledge from different disciplines integrating knowledge in the field of mathematics and produce new information.
5	To be able to define, analyse, model and to solve the problems by scientific methods in Mathematics.
6	To be able to conduct a math related specialistic study independently.
7	To be able to develop new strategic approaches to solve problems occurred in unforeseen and complex math-related applications by taking responsibility.
8	To be able to lead in situations that require solving problems related to the mathematics.
9	To be able to criticize his/her knowledge and skills acquired in the field mathematics.
10	To be able to transfer his/her ideas and suggestions for solutions to problems by supporting quantitative or qualitative data verbally and in writing.
11	To be able to communicate both orally and written in a foreign language.
12	To be able to use computer hardware and information technologies with software required by Mathematics.
13	To be able to contribute to the solution of the social, scientific, cultural and ethical problems related to the Mathematics, and being able to support the development of social, scientific, cultural and ethical values.
14	To be able to develop mathematics-related strategies, policies and operational plans, and to evaluate the results obtained within the framework of quality processes.
15	To be able to use his/her knowledge in the field of mathematics and practical problem-solving skills in interdisciplinary studies.

Contribution of Learning Outcomes to Programme Outcomes 1:Very Low, 2:Low, 3:Medium, 4:High, 5:Very High

	L1	L2	L3	L4	L5
P1	5	5	5	5	5
P2	1	1	1	1	1
P3	5	5	5	5	5
P4	1	1	1	1	1
P6	1	1	1	1	1
P9	3	3	3	3	3
P15	4	4	4	4	4

