

AYDIN ADNAN MENDERES UNIVERSITY COURSE INFORMATION FORM

Course Title		Introduction to Gamma Rings								
Course Code		MTK579		Couse Level		:	Second Cycle (Master's Degree)			
ECTS Credit	8	Workload	200 (Hours)	Theory	3	F	Practice	0	Laboratory	0
Objectives of t	he Course								al notions of gamr tion about the stru	
Course Content									al and homomorph radical, Jacobson	
Work Placement		N/A								
Planned Learning Activities and Teaching Methods			Explana	tion (Prese	entati	on), Discussio	on, Individua	al Study, Problem	Solving	
Name of Lectu	urer(s)									

Assessment Methods and Criteria

Method	Quantity	Percentage (%)
Midterm Examination	1	30
Final Examination	1	50
Assignment	1	20

Recommended or Required Reading

1 Gamma Rings, S. Kyuno, Hadronic Press Inc., Palm Habor, 1991.

Week	Weekly Detailed Course Contents					
1	Theoretical	Definition of gamma ring and some examples of gamma rings				
2	Theoretical	Mutual relations of various gamma rings				
3	Theoretical	Operator rings of gamma rings				
4	Theoretical	Ideals and homomorphisms of gamma rings				
5	Theoretical	Residue class gamma rings				
6	Theoretical	Notion of primeness of gamma rings				
7	Theoretical	Notion of primitivity of gamma rings				
8	Theoretical	Notion of simpleness of gamma rings				
9	Intermediate Exam	MIDTERM EXAM				
10	Theoretical	Density theorem for gamma rings				
11	Theoretical	Prime radical of gamma rings				
12	Theoretical	Levitzki nil radical of gamma rings				
13	Theoretical	Jacobson radical of gamma rings				
14	Theoretical	Relations among radicals of gamma rings and operator rings				
15	Theoretical	Relations among the various radicals of gamma rings				
16	Final Exam	FINAL EXAM				

Workload Calculation

Activity	Quantity	Preparation		Duration	Total Workload		
Lecture - Theory	14		3	3	84		
Assignment	1		22	2	24		
Midterm Examination	1		40	2	42		
Final Examination	1		48	2	50		
Total Workload (Hours)							
[Total Workload (Hours) / 25*] = ECTS							
*25 hour workload is accepted as 1 ECTS							

Learning Outcomes						
1 Abili	lity to understand the notion and fundamental properties of gamma ring, and to learn examples of some gamma rings.					
2 Abili	lity to understand the operator rings and its fundamental properties of a gamma ring.					
3 Abili	Ability to know about the relations between operator rings and gamma rings.					
4 Abili	lity to determine the information about the structure of a gamma ring.					
5 Abili	lity to know about the radicals of a gamma ring.					

Programme Outcomes (Mathematics Master)

logi	
1	To be able to have an adequate theoretical and practical domain knowledge.
2	To be able to comprehend the interdisciplinary interaction associated with Mathematics.
3	To be able to use theoretical and practical domain knowledge gained in the field of Mathematics.
4	To be able to interpret knowledge from different disciplines integrating knowledge in the field of mathematics and produce new information.
5	To be able to define, analyse, model and to solve the problems by scientific methods in Mathematics.
6	To be able to conduct a math related specialistic study independently.
7	To be able to develop new strategic approaches to solve problems occurred in unforeseen and complex math-related applications by taking responsibility.
8	To be able to lead in situations that require solving problems related to the mathematics.
9	To be able to criticize his/her knowledge and skills acquired in the field mathematics.
10	To be able to transfer his/her ideas and suggestions for solutions to problems by supporting quantitative or qualitative data verbally and in writing.
11	To be able to communicate both orally and written in a foreign language.
12	To be able to use computer hardware and information technologies with software required by Mathematics.
13	To be able to contribute to the solution of the social, scientific, cultural and ethical problems related to the Mathematics, and being able to support the development of social, scientific, cultural and ethical values.
14	To be able to develop mathematics-related strategies, policies and operational plans, and to evaluate the results obtained within the framework of quality processes.
15	To be able to use his/her knowledge in the field of mathematics and practical problem-solving skills in interdisciplinary studies.

Contribution of Learning Outcomes to Programme Outcomes 1: Very Low, 2: Low, 3: Medium, 4: High, 5: Very High

	L1	L2	L3	L4	L5
P1	4	4	4	4	4
P2	3	4	4	4	4
P3	3	4	4	4	4
P4	3	4	5	5	5
P5		4	4	5	5
P6			3	3	3
P7	3	4	4	4	4
P15	4	4	4	4	4