

AYDIN ADNAN MENDERES UNIVERSITY COURSE INFORMATION FORM

Course Title Fuzzy Topological Spaces								
Course Code	MTK577		Couse Level		Second Cycle (Master's Degree)			
ECTS Credit 8 Workload 200 (H		200 (Hours)	Theory	3	Practice	0	Laboratory	0
Objectives of the Course					v topological space de a deep ability t			
Course Content Fuzzy sets, fuzzy point, Fuzzy sets, fuzzy point, Fuzzy continuity in fuzzy topologic Fuzzy separation axioms, F		point and clo al spaces, F	osure, Fuzz ^F uzzy produ	zy subspaces, uct spaces, Fuz	Base of a Fi	uzzy topology, Fuz	zzy	
Work Placement N/A								
Planned Learning Activities and Teaching Methods		Explanation	(Presenta	tion), Discussio	on, Individua	al Study, Problem	Solving	
Name of Lecturer(s)								

Assessment Methods and Criteria

Method	Quantity	Percentage (%)	
Midterm Examination	1	30	
Final Examination	1	50	
Assignment	1	20	

Recommended or Required Reading

1 Fuzzy Topology, N. Palaniappan CRC Press, 2002.

2 First Course on Fuzzy Theory and Applications, KKwang, H.L., Springer

Week	Weekly Detailed Co	ourse Contents				
1	Theoretical	Classical Sets, Set Operations				
2	Theoretical	Fuzzy Sets, Fuzzy Set Operations				
3	Theoretical	Fuzzy point and examples				
4	Theoretical	Fuzzy topological spaces and its properties				
5	Theoretical	Fuzzy topological spaces and its properties				
6	Theoretical	Neighborhood system in Fuzzy topological spaces				
7	Theoretical	Accumulation point, cluster point and closure in fuzzy topological spaces				
8	Theoretical	Midterm Exam				
9	Theoretical	Fuzzy subspaces				
10	Theoretical	Fuzzy continuity in fuzzy topological spaces				
11	Theoretical	Base of a fuzzy topological space				
12	Theoretical	Fuzzy product spaces				
13	Theoretical	Fuzzy open and fuzzy closed functions				
14	Theoretical	Fuzzy separation axioms				
15	Theoretical	Fuzzy homeomorphic spaces				
16	Final Exam	Final Exam				

Workload Calculation						
Activity	Quantity	Preparation	Duration	Total Workload		
Lecture - Theory	14	3	3	84		
Assignment	1	22	2	24		
Midterm Examination	1	40	2	42		

Course	Inform	nation	Form
000130			1 01111

Final Examination	1	48	2	50	
	Total Workload (Hours)				
[Total Workload (Hours) / 25*] = ECTS 8					
*25 hour workload is accepted as 1 ECTS					

Learn	ing Outcomes
1	Ability to understand the notion of fuzzy set and to learn how to apply its abstract properties
2	Ability to understand the notion of fuzzy space and ability to explain the differences between topological spaces
3	Ability to understand the concepts of continuity and basis of fuzzy topological spaces
4	Ability to determine a fuzzy function is open or closed
5	Ability to understand fuzzy separation axioms

Programme Outcomes (Mathematics Master)

rogi	annie Odcomes (Matienalies Masier)					
1	To be able to have an adequate theoretical and practical domain knowledge.					
2	To be able to comprehend the interdisciplinary interaction associated with Mathematics.					
3	To be able to use theoretical and practical domain knowledge gained in the field of Mathematics.					
4	To be able to interpret knowledge from different disciplines integrating knowledge in the field of mathematics and produce new information.					
5	To be able to define, analyse, model and to solve the problems by scientific methods in Mathematics.					
6	To be able to conduct a math related specialistic study independently.					
7	To be able to develop new strategic approaches to solve problems occurred in unforeseen and complex math-related applications by taking responsibility.					
8	To be able to lead in situations that require solving problems related to the mathematics.					
9	To be able to criticize his/her knowledge and skills acquired in the field mathematics.					
10	To be able to transfer his/her ideas and suggestions for solutions to problems by supporting quantitative or qualitative data verbally and in writing.					
11	To be able to communicate both orally and written in a foreign language.					
12	To be able to use computer hardware and information technologies with software required by Mathematics.					
13	To be able to contribute to the solution of the social, scientific, cultural and ethical problems related to the Mathematics, and being able to support the development of social, scientific, cultural and ethical values.					
14	To be able to develop mathematics-related strategies, policies and operational plans, and to evaluate the results obtained within the framework of quality processes.					
15	To be able to use his/her knowledge in the field of mathematics and practical problem-solving skills in interdisciplinary studies.					

Contribution of Learning Outcomes to Programme Outcomes 1: Very Low, 2: Low, 3: Medium, 4: High, 5: Very High

	L1	L2	L3	L4	L5
P1	4	4	4	4	4
P2	3	4	4	4	4
P3	3	4	4	4	4
P4	3	4	5	5	5
P5		4	4	5	5
P6			3	3	3
P7	3	4	4	4	4
P15	4	4	4	4	4

