

### AYDIN ADNAN MENDERES UNIVERSITY COURSE INFORMATION FORM

| Course Title Algebra                             |  |                                                                                                                                                                                        |             |             |        |                                |                |          |            |   |
|--------------------------------------------------|--|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------------|--------|--------------------------------|----------------|----------|------------|---|
| Course Code                                      |  | MTK603                                                                                                                                                                                 |             | Couse Level |        | Third Cycle (Doctorate Degree) |                |          |            |   |
| ECTS Credit 10                                   |  | Workload                                                                                                                                                                               | 252 (Hours) | Theory      | /      | 3                              | Practice       | 0        | Laboratory | 0 |
| Objectives of the Course                         |  | The course aims to give fundamental theory of algebra for introduction to advanced algebra.                                                                                            |             |             |        |                                |                |          |            |   |
| Course Content                                   |  | To give introduction to group theory, to give fundamental properties of ring theory, to introduce the polynomial rings, to study prime and maximal ideals, to introduce module theory. |             |             |        |                                |                |          |            |   |
| Work Placement N/A                               |  |                                                                                                                                                                                        |             |             |        |                                |                |          |            |   |
| Planned Learning Activities and Teaching Methods |  |                                                                                                                                                                                        |             | Explan      | nation | (Presentat                     | ion), Individu | al Study |            |   |
| Name of Lecturer(s) Prof. Semra DOĞRUÖZ          |  |                                                                                                                                                                                        |             |             |        |                                |                |          |            |   |

#### **Assessment Methods and Criteria**

| Method              | Quantity | Percentage (%) |  |
|---------------------|----------|----------------|--|
| Midterm Examination | 1        | 25             |  |
| Final Examination   | 1        | 60             |  |
| Assignment          | 2        | 15             |  |

## **Recommended or Required Reading**

| 1 | 1 Algebra , Graduate Text in Mathematics, Thomas W. Hungerford, Springer , 1974.                                 |  |  |  |  |
|---|------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| 2 | Fundamentals of Abstract Algebra, D.S. Malik, John M. Mordeson, M.K. Sen, The McGraw-Hill Companies, Inc., 1997. |  |  |  |  |
| 3 | Abstract Algebra an Introduction, Thomas W. Hungerford, Thomson Learning, 1997.                                  |  |  |  |  |

| Week | Weekly Detailed Cours | e Contents                               |  |  |  |  |  |
|------|-----------------------|------------------------------------------|--|--|--|--|--|
| 1    | Theoretical           | Introduction to group theory             |  |  |  |  |  |
| 2    | Theoretical           | Homomorphisms and isomorphisms of groups |  |  |  |  |  |
| 3    | Theoretical           | Direct product of groups                 |  |  |  |  |  |
| 4    | Theoretical           | Finitely generated abelian groups        |  |  |  |  |  |
| 5    | Theoretical           | Introduction to ring theory              |  |  |  |  |  |
| 6    | Theoretical           | Subrings, ideals and homomorphisms       |  |  |  |  |  |
| 7    | Theoretical           | Localizations of rings                   |  |  |  |  |  |
| 8    | Intermediate Exam     | Midterm exam                             |  |  |  |  |  |
| 9    | Theoretical           | Direct sum of rings                      |  |  |  |  |  |
| 10   | Theoretical           | Polynomial rings                         |  |  |  |  |  |
| 11   | Theoretical           | Euclidean domains                        |  |  |  |  |  |
| 12   | Theoretical           | Unique Factorization domains             |  |  |  |  |  |
| 13   | Theoretical           | Prime and maximal ideals                 |  |  |  |  |  |
| 14   | Theoretical           | Noetherian and Artinian rings            |  |  |  |  |  |
| 15   | Theoretical           | Modules and vector spaces                |  |  |  |  |  |

#### **Workload Calculation**

| Activity                                | Quantity | Preparation |    | Duration | Total Workload |
|-----------------------------------------|----------|-------------|----|----------|----------------|
| Lecture - Theory                        | 14       |             | 5  | 3        | 112            |
| Assignment                              | 2        |             | 0  | 20       | 40             |
| Midterm Examination                     | 1        |             | 38 | 2        | 40             |
| Final Examination                       | 1        |             | 58 | 2        | 60             |
|                                         | 252      |             |    |          |                |
|                                         | 10       |             |    |          |                |
| *25 hour workload is accepted as 1 ECTS |          |             |    |          |                |

\*25 hour workload is accepted as 1 ECTS

#### Learning Outcomes

1 To understand fundamental properties of group theory



| 2 | To understand fundamental properties of ring theory                                   |
|---|---------------------------------------------------------------------------------------|
| 3 | To study on some specific rings                                                       |
| 4 | To understand module theory                                                           |
| 5 | To be able to gain the skill of interpreting some interrelations among these concepts |

#### **Programme Outcomes** (Mathematics Doctorate)

| Progr | amme Outcomes (Mathematics Doctorate)                                                                                                                                                                                                                                                 |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1     | To be able to develop the current and advanced knowledge of mathematics domain to expertise level by an original idea or research, based on the level of its knowledge at the graduate level, and to be able to reach original definitions that will bring innovation to Mathematics. |
| 2     | To be able to comprehend the interdisciplinary interaction associated with Mathematics.                                                                                                                                                                                               |
| 3     | To be able to use and evaluate the new knowledge in the field of Mathematics with a systematic approach.                                                                                                                                                                              |
| 4     | To be able to develop an idea, a method, a design or an application that will bring innovation to Mathematics, to use well known ideas, methods, designs or applications on a different research area, or to search, comprehend, design, adapt and apply an original subject matter.  |
| 5     | To be able to criticize, analyze, synthesize and evaluate new and complex ideas.                                                                                                                                                                                                      |
| 6     | To be able have high-level skills in research methods related to studies on Mathematics.                                                                                                                                                                                              |
| 7     | To be able to expand the frontiers knowledge in the field of Mathematics via generating or interpreting an original study, or publishing at least a scientific paper in national/international refereed journals.                                                                     |
| 8     | To be capable of leadership in the positions that require the analyses of problems related to the field of Mathematics.                                                                                                                                                               |
| 9     | To be able to defend his/her original ideas among the experts in the discussion of math related issues, and to be able to communicate effectively to show his/her competence in the field of Mathematics.                                                                             |
| 10    | To be able to contribute to the solution of the social, scientific, cultural and ethical problems related to the Mathematics, and to be able to support the development of social, scientific, cultural and ethical values.                                                           |
| 11    | To be able to have both oral and written communication using a foreign language.                                                                                                                                                                                                      |

# Contribution of Learning Outcomes to Programme Outcomes 1: Very Low, 2: Low, 3: Medium, 4: High, 5: Very High

|     | L1 | L2 | L3 | L4 | L5 |
|-----|----|----|----|----|----|
| P1  | 3  | 3  | 4  | 4  | 4  |
| P2  | 3  | 3  | 4  | 4  | 4  |
| P3  | 4  | 4  | 4  | 4  | 4  |
| P4  | 3  | 3  | 4  | 4  | 4  |
| P5  | 4  | 4  | 4  | 4  | 4  |
| P6  | 4  | 4  | 4  | 4  |    |
| P7  | 2  | 2  | 3  | 3  |    |
| P8  | 4  | 4  | 4  | 4  |    |
| P9  | 3  | 3  | 3  | 3  |    |
| P10 | 2  | 2  | 3  | 2  |    |
| P11 | 4  | 4  | 4  | 4  |    |

