

AYDIN ADNAN MENDERES UNIVERSITY COURSE INFORMATION FORM

Course Title		Function Theory of One Complex Variable							
Course Code		MTK602		Couse Level		Third Cycle (Doctorate Degree)			
ECTS Credit 7.5		Workload	189 <i>(Hours)</i>	Theory	3	Practice	0	Laboratory	0
Objectives of the Course		To acquaint students with the fundamental notions of function theory of one complex variable including fundamental concepts, complex line integrals, applications of Cauchy integral, meromorphic functions and residues, the zeros of holomorphic function, holomorphic functions as geometric mappings, harmonic functions, infinite series and product, applications of infinite sums and products, analytic continuation, rational approximation theory, special classes of holomorphic functions, special functions.							
Course Content		holomorphic f	unction, holon applications of	norphic functi f infinite sums	ons as geo and produ	metric mappir	ngs, harmonic ontinuation, ra	and residues, th functions, infinite ational approximation	e series
Work Placement		N/A							
Planned Learning Activities and Teaching Methods		Explanation	(Presenta	tion), Discussi	on, Individual	Study, Problem	Solving		
Name of Lecturer(s)									

Assessment Methods and Criteria							
Method		Quantity	Percentage (%)				
Midterm Examination		1	30				
Final Examination		1	50				
Assignment		1	20				

Recommended or Required Reading

1 Function Theory of One Complex Variable, Robert E. Grene, Steven G. Krantz

Veek	Weekly Detailed Court	rse Contents
1	Theoretical	Complex line integrals
	Preparation Work	Relevant part of course book should be read
2	Theoretical	Applications of Cauchy integral
	Preparation Work	Relevant part of course book should be read
3	Theoretical	Meromorphic functions and residues
	Preparation Work	Relevant part of course book should be read
4	Theoretical	The zeros of holomorphic function
	Preparation Work	Relevant part of course book should be read
5	Theoretical	Holomorphic functions as geometric mappings
	Preparation Work	Relevant part of course book should be read
6	Theoretical	Harmonic functions
	Preparation Work	Relevant part of course book should be read
7	Theoretical	Infinite series and product
	Preparation Work	Relevant part of course book should be read
8	Theoretical	Applications of infinite sums and products
	Preparation Work	Relevant part of course book should be read
9	Preparation Work	Relevant part of course book should be read
10	Theoretical	Rational approximation theory
	Preparation Work	Relevant part of course book should be read
11	Theoretical	Special classes of holomorphic functions
	Preparation Work	Relevant part of course book should be read
12	Theoretical	Special classes of holomorphic functions
	Preparation Work	Relevant part of course book should be read
13	Theoretical	Special functions
	Preparation Work	Relevant part of course book should be read

14	Theoretical	Special functions		
	Preparation Work	Relevant part of course book should be read		
15	Preparation Work Relevant part of course book should be read			
	Final Exam	FINAL EXAM		

Workload Calculation

Nonlidud Galdalation					
Activity	Quantity	Preparation	Duration	Total Workload	
Lecture - Theory	14	3	3	84	
Assignment	1	8	2	10	
Reading	12	0	0.5	6	
Midterm Examination	1	35	2	37	
Final Examination	1	50	2	52	
Total Workload (Hours)					
[Total Workload (Hours) / 25*] = ECTS					
*25 hour workload is acconted as 1 ECTS					

*25 hour workload is accepted as 1 ECTS

Learning Outcomes

	· ·
1	Ability to improve the advance concept of theory of complex functions
2	Ability to improve mathematical sense
3	Ability to improve the capacity of posing and solving problems
4	To be able to gain the skill of interpreting some interrelations among these concepts
5	To be able to use mathematical concepts in solving certain types of problems

Programme Outcomes (Mathematics Doctorate)

1	To be able to develop the current and advanced knowledge of mathematics domain to expertise level by an original idea or research, based on the level of its knowledge at the graduate level, and to be able to reach original definitions that will bring innovation to Mathematics.
2	To be able to comprehend the interdisciplinary interaction associated with Mathematics.
3	To be able to use and evaluate the new knowledge in the field of Mathematics with a systematic approach.
4	To be able to develop an idea, a method, a design or an application that will bring innovation to Mathematics, to use well known ideas, methods, designs or applications on a different research area, or to search, comprehend, design, adapt and apply an original subject matter.
5	To be able to criticize, analyze, synthesize and evaluate new and complex ideas.
6	To be able have high-level skills in research methods related to studies on Mathematics.
7	To be able to expand the frontiers knowledge in the field of Mathematics via generating or interpreting an original study, or publishing at least a scientific paper in national/international refereed journals.
8	To be capable of leadership in the positions that require the analyses of problems related to the field of Mathematics.
9	To be able to defend his/her original ideas among the experts in the discussion of math related issues, and to be able to communicate effectively to show his/her competence in the field of Mathematics.
10	To be able to contribute to the solution of the social, scientific, cultural and ethical problems related to the Mathematics, and to be able to support the development of social, scientific, cultural and ethical values.
11	To be able to have both oral and written communication using a foreign language.

Contribution of Learning Outcomes to Programme Outcomes 1: Very Low, 2: Low, 3: Medium, 4: High, 5: Very High

	L1	L2	L3	L4	L5
P1	5	5	5	4	4
P2				4	4
P3	4	4	4	4	4
P4				4	4
P5	4	4	4	4	4

