

AYDIN ADNAN MENDERES UNIVERSITY COURSE INFORMATION FORM

Course Title		Category Theory II							
Course Code		MTK624		Couse Level		Third Cycle (Doctorate Degree)			
ECTS Credit	7.5	Workload	188 (Hours)	Theory	3	Practice	0	Laboratory	0
Objectives of the	he Course	This course aims to give students the basic concepts of category theory, to develop analytical thinking and understanding of abstract concepts. This course aims to gain a systematic approach to define problems and to solve the problems by the discussed topics and their applications.							
Course Content		Categories, monomorphism, epimorphism, initial and terminal objects, functors, natural transformations, category of functors, limits in categories, equalizer, coequalizer, limits, colimits, limits in category of fuctors, universal transformations, adjoint functors.							
Work Placeme	nt	N/A							
Planned Learning Activities and Teaching Methods			Explanation	(Presenta	tion), Discussion	on, Individua	Study, Problem S	Solving	
Name of Lecturer(s)									

Assessment Methods and Criteria						
Method	Quantity	Percentage (%)				
Midterm Examination	1	25				
Final Examination	1	60				
Assignment	1	15				

Recommended or Required Reading

- 1 "Categories for the Working Mathematician", MacLane, S., Springer-Verlag, 1971.
- 2 "Category Theory", Herrlich, H. And Strecker, G. E., Allyn and Bacon Inc., Boston

Week	Weekly Detailed Cour	se Contents
1	Theoretical	Adjoint Functors
2	Theoretical	Existence of Adjoint Functors
3	Theoretical	Hom-Functor
4	Theoretical	Free Objects
5	Theoretical	Algebraic Categories
6	Theoretical	Algebraic Functors
7	Theoretical	Reflective Subcategories
8	Theoretical	General Reflective Subcategories
9	Intermediate Exam	MIDTERM EXAM
10	Theoretical	Algebraic Subcategories
11	Theoretical	Normal and Exact Categories
12	Theoretical	Kernels and Cokernels
13	Theoretical	Additive Categories
14	Theoretical	Abelian Categories
15	Final Exam	FINAL EXAM

Workload Calculation					
Activity	Quantity	Preparation	Duration	Total Workload	
Lecture - Theory	14	3	3	84	
Assignment	1	0	12	12	
Reading	14	0	3	42	
Midterm Examination	1	21	2	23	
Final Examination	mination 1 25		2	27	
	188				
[Total Workload (Hours) / 25*] = ECTS					
*25 hour workload is accepted as 1 ECTS					

Learning Outcomes 1 Be able to comprehend the basic concepts of category theory 2 Be able to comprehend abstract concepts 3 Be able to comprehend analytical thinking 4 To be able to gain the skill of interpreting some interrelations among these concepts

Programme Outcomes (Mathematics Doctorate)

5

- To be able to develop the current and advanced knowledge of mathematics domain to expertise level by an original idea or research, based on the level of its knowledge at the graduate level, and to be able to reach original definitions that will bring innovation to Mathematics.
- 2 To be able to comprehend the interdisciplinary interaction associated with Mathematics.

To be able to use mathematical concepts in solving certain types of problems

- 3 To be able to use and evaluate the new knowledge in the field of Mathematics with a systematic approach.
- To be able to develop an idea, a method, a design or an application that will bring innovation to Mathematics, to use well known ideas, methods, designs or applications on a different research area, or to search, comprehend, design, adapt and apply an original subject matter.
- To be able to criticize, analyze, synthesize and evaluate new and complex ideas.
- 6 To be able have high-level skills in research methods related to studies on Mathematics.
- To be able to expand the frontiers knowledge in the field of Mathematics via generating or interpreting an original study, or publishing at least a scientific paper in national/international refereed journals.
- 8 To be capable of leadership in the positions that require the analyses of problems related to the field of Mathematics.
- To be able to defend his/her original ideas among the experts in the discussion of math related issues, and to be able to communicate effectively to show his/her competence in the field of Mathematics.
- To be able to contribute to the solution of the social, scientific, cultural and ethical problems related to the Mathematics, and to be able to support the development of social, scientific, cultural and ethical values.
- 11 To be able to have both oral and written communication using a foreign language.

Contribution of Learning Outcomes to Programme Outcomes 1: Very Low, 2: Low, 3: Medium, 4: High, 5: Very High

	L1	L2	L3	L4	L5
P1	4	4	4	4	4
P2	3	4	4	4	4
P3	4	5	5	4	4
P4	3	4	4	4	4
P5	4	4	4	4	4
P6	3	4	4		
P7		5	5		
P8		4	4		
P9	3	4	4		
P10		4	4		

