

AYDIN ADNAN MENDERES UNIVERSITY COURSE INFORMATION FORM

Course Title Riemannian Manifolds											
Course Code		MTK627		Couse Level		Third Cycle (Doctorate Degree)					
ECTS Credit	7.5	Workload	188 (Hours)	Theory		3	Pract	ice	0	Laboratory	0
			ı, Riemann ge	odezikle	ri, mo	del uzayla	arın ge	eodezikle	eri, Riemann n	ıl uzayları, konek nanifoldları üzeriı	
Course Content			model spaces,	lengths						eometry, connec urvatures, manifo	
Work Placement N/A											
Planned Learning Activities and Teaching Methods			Methods	Explana	ation (Presentat	ion), [Discussio	on, Individual	Study, Problem S	Solving
Name of Lecturer(s)											

Assessment Methods and Criteria							
Method	Quantity	Percentage (%)					
Midterm Examination	1	20					
Final Examination	1	60					
Quiz	2	10					
Assignment	1	10					

Recommended or Required Reading

- 1 Riemannian Manifolds,Lee J.M., Sringer,1997.
- 2 Riemannian Geometry, Gallot S., Hulin D., Lafontaine J., Sringer, 1997.

Week	Weekly Detailed Course Contents					
1	Theoretical	Manifolds				
2	Theoretical	Vector bundles				
3	Theoretical	Riemannian metrics				
4	Theoretical	Model spaces of Riemannian geometry				
5	Theoretical	Connections				
6	Theoretical	Vector fields				
7	Theoretical	Riemannian geodesics				
8	Intermediate Exam	MIDTERM EXAM				
9	Theoretical	Geodesics of model spaces				
10	Theoretical	Lengths and distances on Riemannian manifolds				
11	Theoretical	Curvature				
12	Theoretical	Manifolds of constant curvatures				
13	Theoretical	Manifolds of constant curvatures				
14	Theoretical	Submanifolds				
15	Final Exam	FINAL EXAM				

Workload Calculation								
Activity	Quantity	Preparation	Duration	Total Workload				
Lecture - Theory	14	3	3	84				
Assignment	1	0	18	18				
Quiz	2	12	1	26				
Midterm Examination	1	26	2	28				

Final Examination	1		30	2	32	
	188					
			[Total Workload (Hours) / 25*] = ECTS	7.5	
*25 hour workload is accepted as 1 ECTS						

Learr	ing Outcomes
1	Defining the concept of a Riemannian manifold
2	Expressing the Riemannian geometry and model spaces
3	Expressing the metrics and geodesics of model spaces
4	Defining the concept of connection
5	Expressing the manifolds of constant curvatures
6	Expressing the concept of submanifold

	Expressing the manifolds of constant curvature	98
6	Expressing the concept of submanifold	
Pro	ogramme Outcomes (Mathematics Doctorate)	
,		ed knowledge of mathematics domain to expertise level by an original idea or at the graduate level, and to be able to reach original definitions that will bring
2	To be able to comprehend the interdisciplinary	interaction associated with Mathematics.
3	To be able to use and evaluate the new knowle	edge in the field of Mathematics with a systematic approach.
4		sign or an application that will bring innovation to Mathematics, to use well on a different research area, or to search, comprehend, design, adapt and
Ę	To be able to criticize, analyze, synthesize and	evaluate new and complex ideas.
6	To be able have high-level skills in research me	ethods related to studies on Mathematics.
7	To be able to expand the frontiers knowledge in publishing at least a scientific paper in national/	n the field of Mathematics via generating or interpreting an original study, or //international refereed journals.
8	To be capable of leadership in the positions that	at require the analyses of problems related to the field of Mathematics.
(To be able to defend his/her original ideas amo communicate effectively to show his/her compe	ong the experts in the discussion of math related issues, and to be able to etence in the field of Mathematics.
1	To be able to contribute to the solution of the so be able to support the development of social, so	ocial, scientific, cultural and ethical problems related to the Mathematics, and to scientific, cultural and ethical values.

Contribution of Learning Outcomes to Programme Outcomes 1:Very Low, 2:Low, 3:Medium, 4:High, 5:Very High

To be able to have both oral and written communication using a foreign language.

	L1	L2	L3	L4	L5	L6
P1	1	1	1	1	1	1
P3	3	3	3	3	3	3
P6	3	3	3	3	3	3
P7	1	1	1	1	1	1

11