

#### AYDIN ADNAN MENDERES UNIVERSITY COURSE INFORMATION FORM

| Course Title                                                                                   |     | Differential and Riemannian Manifolds II                                                                              |                    |                |                  |                                |   |            |   |
|------------------------------------------------------------------------------------------------|-----|-----------------------------------------------------------------------------------------------------------------------|--------------------|----------------|------------------|--------------------------------|---|------------|---|
| Course Code                                                                                    |     | MTK632                                                                                                                |                    | Couse Level    |                  | Third Cycle (Doctorate Degree) |   |            |   |
| ECTS Credit                                                                                    | 7.5 | Workload                                                                                                              | 189 <i>(Hours)</i> | Theory         | 3                | Practice                       | 0 | Laboratory | 0 |
| Objectives of the Course                                                                       |     | The main goal is this course to provide a working knowledge of Riemanniann manifolds, tensors and differential forms. |                    |                |                  |                                |   |            |   |
| Course Content                                                                                 |     | The Riemannian Distance, Operations on Vector Fields, The Riemannian Volume Form, Stoke's Theorem on a Manifold       |                    |                |                  |                                |   |            |   |
| Work Placement N/A                                                                             |     | N/A                                                                                                                   |                    |                |                  |                                |   |            |   |
| Planned Learning Activities and Teaching Methods Explanation (Presentation), Discussion, Indiv |     |                                                                                                                       |                    | on, Individual | Study, Problem S | Solving                        |   |            |   |
| Name of Lecturer(s)                                                                            |     |                                                                                                                       |                    |                |                  |                                |   |            |   |

#### **Assessment Methods and Criteria**

| Method              | Quantity | Percentage (%) |  |
|---------------------|----------|----------------|--|
| Midterm Examination | 1        | 40             |  |
| Final Examination   | 1        | 40             |  |
| Quiz                | 1        | 10             |  |
| Assignment          | 2        | 10             |  |

#### **Recommended or Required Reading**

1 Differential and Riemannian Manifolds, Lang S., Springer-Verlag 1995

| Week | Weekly Detailed Cour | d Course Contents                               |  |  |  |  |
|------|----------------------|-------------------------------------------------|--|--|--|--|
| 1    | Theoretical          | Basic Properties                                |  |  |  |  |
| 2    | Theoretical          | The Riemannian distance                         |  |  |  |  |
| 3    | Theoretical          | The Riemannian Tensor                           |  |  |  |  |
| 4    | Theoretical          | The Second Variation Formula                    |  |  |  |  |
| 5    | Theoretical          | The Riemannian Volume Form                      |  |  |  |  |
| 6    | Theoretical          | Covariant Derivatives                           |  |  |  |  |
| 8    | Theoretical          | Solve the problem about what he has learned     |  |  |  |  |
| 9    | Theoretical          | The Jacobian Determinant of the Exponential Map |  |  |  |  |
| 10   | Theoretical          | Covariant Derivatives                           |  |  |  |  |
| 11   | Intermediate Exam    | Midterm exam                                    |  |  |  |  |
| 12   | Theoretical          | Orientation                                     |  |  |  |  |
| 13   | Theoretical          | Stoke's Theorem on a Manifold                   |  |  |  |  |
| 14   | Theoretical          | The Divergence Theorem                          |  |  |  |  |
| 15   | Final Exam           | Final exam                                      |  |  |  |  |

### **Workload Calculation**

| Quantity                              | Preparation | Duration                        | Total Workload                                                                |  |  |
|---------------------------------------|-------------|---------------------------------|-------------------------------------------------------------------------------|--|--|
| 14                                    | 3           | 3                               | 84                                                                            |  |  |
| 2                                     | 0           | 20                              | 40                                                                            |  |  |
| 1                                     | 10          | 1                               | 11                                                                            |  |  |
| 1                                     | 20          | 2                               | 22                                                                            |  |  |
| 1                                     | 30          | 2                               | 32                                                                            |  |  |
| Total Workload (Hours)                |             |                                 |                                                                               |  |  |
| [Total Workload (Hours) / 25*] = ECTS |             |                                 |                                                                               |  |  |
|                                       | 14          | 14 3   2 0   1 10   1 20   1 30 | 14     3     3       2     0     20       1     10     1       1     20     2 |  |  |

\*25 hour workload is accepted as 1 ECTS

### Learning Outcomes

1 To learn the Riemannian Distance



| 2 | To learn the Second Variation Formula                            |                      |
|---|------------------------------------------------------------------|----------------------|
| 3 | To learn The Riemannian Volume Form                              |                      |
| 4 | To learn Stoke's Theorem on a Manifold                           |                      |
| 5 | To be able to gain the skill of interpreting some interrelations | among these concepts |

## Programme Outcomes (Mathematics Doctorate)

| Progr | amme Outcomes (Mathematics Doctorate)                                                                                                                                                                                                                                                 |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1     | To be able to develop the current and advanced knowledge of mathematics domain to expertise level by an original idea or research, based on the level of its knowledge at the graduate level, and to be able to reach original definitions that will bring innovation to Mathematics. |
| 2     | To be able to comprehend the interdisciplinary interaction associated with Mathematics.                                                                                                                                                                                               |
| 3     | To be able to use and evaluate the new knowledge in the field of Mathematics with a systematic approach.                                                                                                                                                                              |
| 4     | To be able to develop an idea, a method, a design or an application that will bring innovation to Mathematics, to use well known ideas, methods, designs or applications on a different research area, or to search, comprehend, design, adapt and apply an original subject matter.  |
| 5     | To be able to criticize, analyze, synthesize and evaluate new and complex ideas.                                                                                                                                                                                                      |
| 6     | To be able have high-level skills in research methods related to studies on Mathematics.                                                                                                                                                                                              |
| 7     | To be able to expand the frontiers knowledge in the field of Mathematics via generating or interpreting an original study, or publishing at least a scientific paper in national/international refereed journals.                                                                     |
| 8     | To be capable of leadership in the positions that require the analyses of problems related to the field of Mathematics.                                                                                                                                                               |
| 9     | To be able to defend his/her original ideas among the experts in the discussion of math related issues, and to be able to communicate effectively to show his/her competence in the field of Mathematics.                                                                             |
| 10    | To be able to contribute to the solution of the social, scientific, cultural and ethical problems related to the Mathematics, and to be able to support the development of social, scientific, cultural and ethical values.                                                           |
| 11    | To be able to have both oral and written communication using a foreign language.                                                                                                                                                                                                      |

# Contribution of Learning Outcomes to Programme Outcomes 1: Very Low, 2: Low, 3: Medium, 4: High, 5: Very High

|     | L1 | L2 | L3 | L4 | L5 |
|-----|----|----|----|----|----|
| P1  | 5  | 5  | 5  | 5  | 5  |
| P2  | 5  | 5  | 5  | 5  | 5  |
| P3  | 5  | 5  | 5  | 5  | 5  |
| P4  | 5  | 5  | 5  | 5  | 5  |
| P5  | 5  | 5  | 5  | 5  | 5  |
| P7  | 5  | 5  | 5  | 5  | 5  |
| P8  | 5  | 5  | 5  | 5  | 5  |
| P9  | 3  | 3  | 3  | 3  | 3  |
| P10 | 5  | 5  | 5  | 5  | 5  |
| P11 | 4  | 4  | 4  | 4  | 4  |

