

### AYDIN ADNAN MENDERES UNIVERSITY COURSE INFORMATION FORM

| Course Title Semi-Riemannian Geome                   |          | nian Geometr                                                                                                                                           | y           |        |                                |                |                |                |         |
|------------------------------------------------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------|--------------------------------|----------------|----------------|----------------|---------|
| Course Code                                          | MTK633   |                                                                                                                                                        | Couse Level |        | Third Cycle (Doctorate Degree) |                |                |                |         |
| ECTS Credit 7.5                                      | Workload | 189 <i>(Hours)</i>                                                                                                                                     | Theory      | ,      | 3                              | Practice       | 0              | Laboratory     | 0       |
| Objectives of the Course The main goal is this cours |          |                                                                                                                                                        | e to prov   | vide a | a working k                    | nowledge of S  | Semi-Riemanı   | nian Geometry. |         |
| Course Content                                       |          | Symmetric bilinear form and scalar producs, The Levi-Civita connections, Geodesics and exponential maps, Tensor derivation, Ricci and scalar curvature |             |        |                                |                | nential        |                |         |
| Work Placement N/A                                   |          |                                                                                                                                                        |             |        |                                |                |                |                |         |
| Planned Learning Activities and Teaching Methods     |          |                                                                                                                                                        | Explan      | ation  | (Presentat                     | ion), Discussi | on, Individual | Study, Problem | Solving |
| Name of Lecturer(s)                                  |          |                                                                                                                                                        |             |        |                                |                |                |                |         |

### **Assessment Methods and Criteria**

| Method              | Quantit | y Percentage (%) |
|---------------------|---------|------------------|
| Midterm Examination | 1       | 40               |
| Final Examination   | 1       | 40               |
| Quiz                | 1       | 10               |
| Assignment          | 2       | 10               |

#### **Recommended or Required Reading**

1

Semi-Riemannian Geometry with Application to Relativity, O'Neill, B., Academic Press. Inc. New York 1983

| Week | Weekly Detailed Course Contents |                                             |  |  |  |
|------|---------------------------------|---------------------------------------------|--|--|--|
| 1    | Theoretical                     | Symmetric bilinear form and scalar producs  |  |  |  |
| 2    | Theoretical                     | Isometry                                    |  |  |  |
| 3    | Theoretical                     | The Levi-Civita connections                 |  |  |  |
| 4    | Theoretical                     | Geodesics                                   |  |  |  |
| 5    | Theoretical                     | Exponential maps                            |  |  |  |
| 6    | Theoretical                     | Curvature                                   |  |  |  |
| 8    | Theoretical                     | Semi-Riemannian surfaces                    |  |  |  |
| 9    | Theoretical                     | Metric contraction                          |  |  |  |
| 10   | Theoretical                     | Tensor derivation                           |  |  |  |
| 11   | Intermediate Exam               | Midterm exam                                |  |  |  |
| 12   | Theoretical                     | Ricci and scalar curvature                  |  |  |  |
| 13   | Theoretical                     | Differential operator                       |  |  |  |
| 14   | Theoretical                     | Solve the problem about what he has learned |  |  |  |
| 15   | Final Exam                      | Final exam                                  |  |  |  |

## **Workload Calculation**

| Activity                                     | Quantity | Preparation | Duration | Total Workload |  |  |
|----------------------------------------------|----------|-------------|----------|----------------|--|--|
| Lecture - Theory                             | 14       | 3           | 3        | 84             |  |  |
| Assignment                                   | 2        | 0           | 20       | 40             |  |  |
| Quiz                                         | 1        | 10          | 1        | 11             |  |  |
| Midterm Examination                          | 1        | 20          | 2        | 22             |  |  |
| Final Examination                            | 1        | 30          | 2        | 32             |  |  |
|                                              | 189      |             |          |                |  |  |
| [Total Workload (Hours) / 25*] = <b>ECTS</b> |          |             |          |                |  |  |
| *05 have a list of in a second state of 5070 |          |             |          |                |  |  |

\*25 hour workload is accepted as 1 ECTS

# Learning Outcomes

- 1 To learn symmetric bilinear form and scalar products
- 2 To learn the Levi-Civita connection



| Inform | Form |
|--------|------|

| 3 | To learn geodesics and exponential maps |  |
|---|-----------------------------------------|--|
| 4 | To learn tensor derivation              |  |
| 5 | To learn Ricci and scalar curvature     |  |
|   |                                         |  |

Programme Outcomes (Mathematics Doctorate)

| Progr | amme Outcomes (Mathematics Doctorate)                                                                                                                                                                                                                                                 |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1     | To be able to develop the current and advanced knowledge of mathematics domain to expertise level by an original idea or research, based on the level of its knowledge at the graduate level, and to be able to reach original definitions that will bring innovation to Mathematics. |
| 2     | To be able to comprehend the interdisciplinary interaction associated with Mathematics.                                                                                                                                                                                               |
| 3     | To be able to use and evaluate the new knowledge in the field of Mathematics with a systematic approach.                                                                                                                                                                              |
| 4     | To be able to develop an idea, a method, a design or an application that will bring innovation to Mathematics, to use well known ideas, methods, designs or applications on a different research area, or to search, comprehend, design, adapt and apply an original subject matter.  |
| 5     | To be able to criticize, analyze, synthesize and evaluate new and complex ideas.                                                                                                                                                                                                      |
| 6     | To be able have high-level skills in research methods related to studies on Mathematics.                                                                                                                                                                                              |
| 7     | To be able to expand the frontiers knowledge in the field of Mathematics via generating or interpreting an original study, or publishing at least a scientific paper in national/international refereed journals.                                                                     |
| 8     | To be capable of leadership in the positions that require the analyses of problems related to the field of Mathematics.                                                                                                                                                               |
| 9     | To be able to defend his/her original ideas among the experts in the discussion of math related issues, and to be able to communicate effectively to show his/her competence in the field of Mathematics.                                                                             |
| 10    | To be able to contribute to the solution of the social, scientific, cultural and ethical problems related to the Mathematics, and to be able to support the development of social, scientific, cultural and ethical values.                                                           |
| 11    | To be able to have both oral and written communication using a foreign language.                                                                                                                                                                                                      |
|       |                                                                                                                                                                                                                                                                                       |

Contribution of Learning Outcomes to Programme Outcomes 1: Very Low, 2: Low, 3: Medium, 4: High, 5: Very High

|     | L1 | L2 | L3 | L4 | L5 |
|-----|----|----|----|----|----|
| P1  | 5  | 5  | 5  | 5  | 5  |
| P2  | 5  | 5  | 5  | 5  | 5  |
| P3  | 5  | 5  | 5  | 5  | 5  |
| P4  | 5  | 5  | 5  | 5  | 5  |
| P5  | 5  | 5  | 5  | 5  | 5  |
| P7  | 5  | 5  | 5  | 5  | 5  |
| P8  | 5  | 5  | 5  | 5  | 5  |
| P9  | 3  | 3  | 3  | 3  | 3  |
| P10 | 5  | 5  | 5  | 5  | 5  |
| P11 | 4  | 4  | 4  | 4  | 4  |