

AYDIN ADNAN MENDERES UNIVERSITY COURSE INFORMATION FORM

Course Title		Advanced Art	ificial Intellige	nce					
Course Code		MTK637 C		Couse Level		Third Cycle (Doctorate Degree)			
ECTS Credit	7.5	Workload	189 <i>(Hours)</i>	Theory	3	Practice	0	Laboratory	0
Objectives of the Course			nce, and the	course aims	to gain the			of artificial intellig modern approac	
Course Content		prepositional a networks, con	and predicate straints and s networks, Ge	calculus, Kr yntactic app enetic algorit	nowledge re roaches, Se	presentation, earching Algori	Rules of infe ithms, Learni	es, inclusion hiera rence, frames, se ng Algorithms, De ter vision, natural	emantic ecision
Work Placement N/A									
Planned Learning Activities and Teaching Methods		Methods	Explanation	n (Presenta	tion), Discussi	on, Individual	Study, Problem	Solving	
Name of Lecturer(s)									

Assessment Methods and Criteria

Method	Quantity	Percentage (%)	
Midterm Examination		1	30
Final Examination		1	50
Assignment		1	20

Recommended or Required Reading

1 Artificial Intelligence: A Modern Approach, Stuart Russell , Peter Norvig, 3rd edition, 2009

Week	Weekly Detailed Cour	se Contents
1	Theoretical	Introduction to AI
2	Theoretical	Programming languages
3	Theoretical	Knowledge representation: Production rules, inclusion hierarchies, prepositional and predicate calculus
4	Theoretical	Knowledge representation: Rules of inference, frames, semantic networks, constraints and syntactic approaches.
5	Theoretical	Searching: Hypothesis and test, depth-first search, breadth-first search
6	Theoretical	Searching: Heuristic search, optimal search
7	Theoretical	Searching: Game trees and adversarial search: minimax search and alpha-beta pruning
8	Theoretical	Learning: Decision trees
9	Intermediate Exam	Midterm exam
10	Theoretical	Learning: Neural nets, perceptrons
11	Theoretical	Learning:Genetic algorithms
12	Theoretical	Expert systems, robotics, computer vision, natural language processing, speech recognition
13	Theoretical	Expert systems, robotics, computer vision, natural language processing, speech recognition
14	Theoretical	Expert systems, robotics, computer vision, natural language processing, speech recognition
15	Final Exam	Final exam

Workload Calculation						
Activity	Quantity	Preparation	Duration	Total Workload		
Lecture - Theory	14	3	3	84		
Assignment	1	20	1	21		
Midterm Examination	1	35	2	37		

	antina	E
		FOIII

Final Examination	1		45	2	47
Total Workload (Hours)					189
[Total Workload (Hours) / 25*] = ECTS				7.5	
*25 hour workload is accepted as 1 ECTS					

	A
i earning	Outcomes
Louining	outoonico

Learn	ing Outcomes
1	Ability to have fundamental knowledge of artificial intelligence
2	Ability to design intelligent systems
3	Ability to use artificial intelligence techniques
4	To be able to gain the skill of interpreting some interrelations among these concepts
5	To be able to use mathematical concepts in solving certain types of problems

Programme Outcomes (Mathematics Doctorate)

1	To be able to develop the current and advanced knowledge of mathematics domain to expertise level by an original idea or research, based on the level of its knowledge at the graduate level, and to be able to reach original definitions that will bring innovation to Mathematics.
2	To be able to comprehend the interdisciplinary interaction associated with Mathematics.
3	To be able to use and evaluate the new knowledge in the field of Mathematics with a systematic approach.
4	To be able to develop an idea, a method, a design or an application that will bring innovation to Mathematics, to use well known ideas, methods, designs or applications on a different research area, or to search, comprehend, design, adapt and apply an original subject matter.
5	To be able to criticize, analyze, synthesize and evaluate new and complex ideas.
6	To be able have high-level skills in research methods related to studies on Mathematics.
7	To be able to expand the frontiers knowledge in the field of Mathematics via generating or interpreting an original study, or publishing at least a scientific paper in national/international refereed journals.
8	To be capable of leadership in the positions that require the analyses of problems related to the field of Mathematics.
9	To be able to defend his/her original ideas among the experts in the discussion of math related issues, and to be able to communicate effectively to show his/her competence in the field of Mathematics.
10	To be able to contribute to the solution of the social, scientific, cultural and ethical problems related to the Mathematics, and to be able to support the development of social, scientific, cultural and ethical values.
11	To be able to have both oral and written communication using a foreign language.

Contribution of Learning Outcomes to Programme Outcomes 1: Very Low, 2: Low, 3: Medium, 4: High, 5: Very High

	L1	L2	L3	L4	L5
P1	5	4	4	4	4
P2	4	4	5	5	5
P3	5	4	5	5	5
P4	4	5	5	5	4
P5	4	4	5	5	5
P6	4	5	5	5	4
P7			3	3	3
P9	3		3	3	
P11	3		3	3	3

