

AYDIN ADNAN MENDERES UNIVERSITY COURSE INFORMATION FORM

Course Title Dijital Signal Processing								
Course Code	MTK640		Couse Level		Third Cycle (Doctorate Degree)			
ECTS Credit 7.5	Workload 189	9 (Hours)	Theory	3	Practice	0	Laboratory	0
Objectives of the Course This course will introduce the the end of the course, studen Processing (DSP), including a emphasizes intuitive understated Matlab environment.			nts will be f digital filter	amiliar with design and	the most impo	ortant methods main processi	s in Digital Signa ing. The course	
Course Content Introduction to digital signal time systems. Discrete transdiscrete transforms. Z-transforms algorithms for digital impulse response (FIR) digital frequency sampling. Recurs		crete trans s. Z-transo s for digita (FIR) digit	forms, Disc orm and app Il signal pro al filter des	rete Fourie olications. E cessing and ign. Windov	r transform. Fa extracting corred d speech recog v-based FIR fil	ast Fourier translelation and co gnition. Digital ter design. FII	nsform, inverseF nvolution function I filter design. Fin	FT, and n. ite
Work Placement N/A								
Planned Learning Activities	and Teaching Meth	nods	Explanation	n (Presenta	tion), Discussi	on, Individual	Study, Problem	Solving
Name of Lecturer(s)								

Assessment Methods and Criteria						
Method Quantity Percentage						
Midterm Examination		1	25			
Final Examination		1	50			
Assignment		1	25			

Reco	Recommended or Required Reading						
1	Computer-Based Exercises for Signal Processing Using MATLAB, McClellan, J. H., et al., Upper Saddle River, NJ: Prentice Hall, 1998						
2	Digital Signal Processing, A practical Approach, Emmanuel C. Ifeachor, Barrie W. Jervis, Second Edition, Prentice Hall, 2002						
3	Digital Signal Processing: A computer-based approach (3rd ed.), Sanjit K. Mitra, McGraw-Hill, 2005						

Week	Weekly Detailed Cour	se Contents
1	Theoretical	Introduction to digital signal processing and its applications
	Preparation Work	Read the related subjects from the Course Books
2	Theoretical	Analog/digital input/output interfaces for real time systems
	Preparation Work	Read the related subjects from the Course Books
3	Theoretical	Discrete transforms, Discrete Fourier transform
	Preparation Work	Read the related subjects from the Course Books
4	Theoretical	Fast Fourier transform, inverseFFT, and discrete transforms
	Preparation Work	Read the related subjects from the Course Books
5	Theoretical	Z-transorm and applications
	Preparation Work	Read the related subjects from the Course Books
6	Theoretical	Extracting correlation and convolution function
	Preparation Work	Read the related subjects from the Course Books
7	Theoretical	Training algorithms for digital signal processing and speech recognition
	Preparation Work	Read the related subjects from the Course Books
8	Theoretical	Digital filter design
	Preparation Work	Read the related subjects from the Course Books
9	Preparation Work	Read all subjects again
	Intermediate Exam	Midterm exam
10	Theoretical	Finite impulse response (FIR) digital filter design
	Preparation Work	Read the related subjects from the Course Books
11	Theoretical	Window-based FIR filter design

11	Preparation Work	Read the related subjects from the Course Books				
12	Theoretical FIR filter design by frequency sampling					
	Preparation Work	Read the related subjects from the Course Books				
13	Theoretical	Recursive (IIR) digital filter design				
	Preparation Work	Read the related subjects from the Course Books				
14	Theoretical	Adaptive digital filters				
	Preparation Work	Read the related subjects from the Course Books				
15	Preparation Work	Read all subjects again				
	Final Exam	Final exam				

Workload Calculation					
Activity	Quantity	Preparation	Duration	Total Workload	
Lecture - Theory	14	3	3	84	
Assignment	1	0	21	21	
Midterm Examination	1	35	2	37	
Final Examination	1	45	2	47	
		To	tal Workload (Hours)	189	
[Total Workload (Hours) / 25*] = ECTS					
*25 hour workload is accepted as 1 ECTS					

Learn	Learning Outcomes					
1	Ability to understand the fundamental concepts of Digital Signal Processing (DSP)					
2	Ability to use filters and transforms in DSP					
3	Ability to develop applications using the techniques in DSP					
4	To be able to gain the skill of interpreting some interrelations among these concepts					
5	To be able to use mathematical concepts in solving certain types of problems					

Programme Outcomes (Mathematics Doctorate)

- To be able to develop the current and advanced knowledge of mathematics domain to expertise level by an original idea or research, based on the level of its knowledge at the graduate level, and to be able to reach original definitions that will bring innovation to Mathematics.
- 2 To be able to comprehend the interdisciplinary interaction associated with Mathematics.
- To be able to use and evaluate the new knowledge in the field of Mathematics with a systematic approach.
- To be able to develop an idea, a method, a design or an application that will bring innovation to Mathematics, to use well known ideas, methods, designs or applications on a different research area, or to search, comprehend, design, adapt and apply an original subject matter.
- 5 To be able to criticize, analyze, synthesize and evaluate new and complex ideas.
- To be able have high-level skills in research methods related to studies on Mathematics.
- 7 To be able to expand the frontiers knowledge in the field of Mathematics via generating or interpreting an original study, or publishing at least a scientific paper in national/international refereed journals.
- 8 To be capable of leadership in the positions that require the analyses of problems related to the field of Mathematics.
- To be able to defend his/her original ideas among the experts in the discussion of math related issues, and to be able to communicate effectively to show his/her competence in the field of Mathematics.
- To be able to contribute to the solution of the social, scientific, cultural and ethical problems related to the Mathematics, and to be able to support the development of social, scientific, cultural and ethical values.
- 11 To be able to have both oral and written communication using a foreign language.

Contribution of Learning Outcomes to Programme Outcomes 1: Very Low, 2:Low, 3: Medium, 4: High, 5: Very High

	L1	L2	L3	L4	L5
P1	3	3	4	4	4
P2	3	4	5	5	4
P3	4	4	4	4	5
P4	4	5	5	4	4
P5	4	4	5	5	4
P6	3	5	5	4	4
P7		3	3	3	3
P9	4	4	4	4	4

P10	4	4	4	4	4
P11	3	3	3	3	3

