

AYDIN ADNAN MENDERES UNIVERSITY COURSE INFORMATION FORM

Course Title		Classical Electrodynamics							
Course Code		FZK508		Couse Level		Second Cycle (Master's Degree)			
ECTS Credit	9	Workload	225 (Hours)	Theory	3	Practice	0	Laboratory	0
Objectives of the Course		To teach the fundamentals of classical electrodynamics and its applications							
Course Content		The basic laws of electrostatic, image method, boundary-value problems, Green's function and its applications, Multiple expansion, the macroscopic electrostatics, dielectrics.					its		
Work Placement									
Planned Learning Activities and Teaching Methods		Explanati	on (Presentat	tion), Discussi	on, Problem	Solving			
Name of Lecturer(s) Assoc. Prof. Fatih ERSAN, Assoc. Prof. Yelda KADIOĞLU									

Assessment Methods and Criteria					
Method	Quantity	Percentage (%)			
Midterm Examination	1	15			
Final Examination	1	60			
Quiz	2	5			
Attending Lectures	14	10			
Assignment	8	10			

Reco	mmended or Required Reading
1	Classical Electrodynamics, John David Jackson
2	Classical Electromagnetic radiation, Jerry B. Marion
3	Introductions to electrodynamics, D.J.Griffits
4	Classical Electrodynamics, W. Greiner

Week	Weekly Detailed Course Contents					
1	Theoretical	Coulomb's law, Electric field				
	Preparation Work	Classical Electrodynamics, John David Jackson, Section 1.2				
2	Theoretical	Gauss's law and scalar potential				
	Preparation Work	Classical Electrodynamics, John David Jackson, Section 1.3, 1.4, 1.5				
3	Theoretical	Poisson's and Laplace's equation				
	Preparation Work	Classical Electrodynamics, John David Jackson, Section 1.6, 1.7				
4	Theoretical	Image method				
	Preparation Work	Classical Electrodynamics, John David Jackson, Section 2.1-2.8				
5	Theoretical	Boundary-value problems in rectangular coordinates				
	Preparation Work	Classical Electrodynamics, John David Jackson, Section 2.9, 2.10				
6	Theoretical	Boundary value problems in spherical coordinates				
	Preparation Work	Classical Electrodynamics, John David Jackson, Bölüm 3.1-3.5				
7	Theoretical	Boundary value problems in cylindrical coordinates				
	Preparation Work	Classical Electrodynamics, John David Jackson, Section 3.6, 3.7				
8	Intermediate Exam	Midterm Exam				
9	Theoretical	Green functions				

		Course Information Form	
9	Preparation Work	Classical Electrodynamics, John David Jackson, Section 1.8-1.11, Section 3.8	
10	Theoretical	Application of Green functions in spherical coordinates	
	Preparation Work	Classical Electrodynamics, John David Jackson, Section 3.9	
11	Theoretical	Application of Green functions in cylindrical coordinates	
	Preparation Work	Classical Electrodynamics, John David Jackson, Section 3.10-3.12	
12	Theoretical	Multipol expansion	
	Preparation Work	Classical Electrodynamics, John David Jackson, Section 4.1, 4.2	
13	Theoretical	Macroscopic electrostatic	
	Preparation Work	Classical Electrodynamics, John David Jackson, Section 4.3	
14	Theoretical	Boundary value problems in dielectric media	
	Preparation Work	Classical Electrodynamics, John David Jackson, Section 4.4, 4.5	
15	Theoretical	Boundary value problems in dielectric media	
	Preparation Work	Classical Electrodynamics, John David Jackson, Section 4.4, 4.5	
16	Final Exam	Final Exam	

Workload Calculation					
Activity	Quantity	Preparation	Duration	Total Workload	
Lecture - Theory	14	6	3	126	
Assignment	8	5	2	56	
Quiz	3	5	2	21	
Midterm Examination	1	9	2	11	
Final Examination	1	9	2	11	
Total Workload (Hours)					
[Total Workload (Hours) / 25*] = ECTS					
*25 hour workload is accepted as 1 ECTS					

Learning Outcomes						
1	To learn and apply the basic laws of electrostatic problems					
2	To solve problems with image method					
3	To solve boundary value problems					
4	To understand Green function and to use it in problem solution					
5	To solve problems involving the dielectric medium					

Prog	ramme Outcomes (Physics Master)					
1	The student should conceive the concepts in physics and may apply them on her/his own					
2	The student should be able to conceive the relationship between the different physics laws and integrity of them and apply them in solving different physics problems					
3	The student should know the basic principles of classical, quantum and relativistic physics and use them in the solutions of problems					
4	The student should be able to do research in a specific area of physics					
5	The student should be able to prepare reports on papers on the subject of her/his research and present her/his research subject in scientific conferences					
6	The student should be able to explain the relationship between complicated problems and basic physics laws.					
7	The student should be able to use computers for solving complicated physics problems					
8	The student should be able to interrelate between the theory and the experiment. If she/he is experimentalist he/she has to explain the theory behind her/his work. If she /he is a theorist she/he should has to know the experiments in her/his subject.					

Contribution of Learning Outcomes to Programme Outcomes 1:Very Low, 2:Low, 3:Medium, 4:High, 5:Very High

	L1	L2	L3	L4	L5
P1	5	4	5	5	5
P2	4	4	4	4	4
P3	4	4	4	4	4
P4	3	3	3	3	3
P5	3	3	3	3	3
P6	4	4	3	4	4
P7	3	3	3	3	3
P8	3	3	3	3	3

