

AYDIN ADNAN MENDERES UNIVERSITY COURSE INFORMATION FORM

Course Title Quantum Mechanics									
Course Code	FZK511		Couse Level		Second Cycle (Master's Degree)				
ECTS Credit 9	Workload 2	30 (Hours)	Theory	/ 3	5	Practice	0	Laboratory	0
Objectives of the Course	Discussion of similarities and differences between quantum mechanics and classical mechanics by teaching the basic concepts of quantum mechanics, representation of mathematical formulation of quantum mechanics, representation of applications of quantum mechanics to basic systems like harmonic oscillator.								
Course Content	Quantum theory particle motion a of wave mechar oscillator, WKB ,	and wave s and wave ec nics, scatteri approximati	structur quation, ng prot on	e of the ma Schröding blem in one	tter, t er eq dime	he meaning c uation wave fi ension, transfe	of the wave fur unction and op er and scatterin	nction, wave pack berator algebra, pi ng matrices, harm	et, free rinciples ionic
Work Placement									
Planned Learning Activities and Teaching Methods		Explar	nation (Pres	enta	tion), Discuss	ion, Individual	Study, Problem S	Solving	
Name of Lecturer(s)	Lec. Onur GEN	Ç							

Assessment Methods and Criteria						
Method		Quantity	Percentage (%)			
Midterm Examination		1	20			
Final Examination		1	30			
Quiz		2	8			
Attending Lectures		14	28			
Assignment		14	14			

Recommended or	Required	Reading
----------------	----------	---------

1	Quantum Mechanics, Eugen Merzbacher, 3.Ed
2	Quantum Mechanics, B.H. Bransden & C.J. Joachim, 2.Ed
3	Quantum Mechanics, Arno Bohm, 3. Ed.
4	Introduction to Quantum Mechanics, R. Shankar, 2.Ed.

Week	Weekly Detailed Course Contents					
1	Theoretical	Quantum Theory and Wave Structure of the Matter				
	Preparation Work	B.H. Bransden & C.J. Joachim Quantum Mechanics (2. Ed) Section 2.1-2.4				
2	Theoretical	The Meaning of the Wave Function				
	Preparation Work	Eugen Merzbacher Quantum Mechanics (3. Ed.), Chapter 1				
3	Theoretical	Wave Packets, Free Particle Motion				
	Preparation Work	Eugen Merzbacher Quantum Mechanics (3. Ed.) Section 2.1-2.3				
4	Theoretical	Wave Equation				
	Preparation Work	Eugen Merzbacher Quantum Mechanics (3. Ed.) Section 2.4, 2.5				
5	Theoretical	Schrödinger's Equation and Wave Function				
	Preparation Work	Eugen Merzbacher Quantum Mechanics (3. Ed.) Section 3.1, 32				
6	Theoretical	Operator Algebra				
	Preparation Work	Eugen Merzbacher, Quantum Mechanics (3. Ed.), Section 3.1, 32				

Theoretical	Bringiples of Ways Mashanias
	Finciples of wave mechanics
Preparation Work	Eugen Merzbacher, Quantum Mechanics (3. Ed.), Section 3.3
Intermediate Exam	Midterm Exam
Theoretical	Scattering Problems in One Dimension
Preparation Work	Shankar R. Introduction to Quantum Mechanics (2. Ed.) Section 5.3, 5.4
Theoretical	Transfer and Scattering Matrices
Preparation Work	Eugen Merzbacher, Quantum Mechanics (3. Ed.), Section 6.3
Theoretical	Harmonic Oscillator
Preparation Work	Shankar R., Introduction to Quantum Mechanics (2. Ed.), Section 7.4
Theoretical	WKB Approximation
Preparation Work	B.H. Bransden & C.J. Joachim, Quantum Mechanics (2. Ed.), Section8.4, Appendix B
Theoretical	Variational Methods
Preparation Work	Shankar R., Introduction to Quantum Mechanics (2. Ed.), Section 16.1
Theoretical	Vector Spaces in Quantum Mechanics
Preparation Work	Eugen Merzbacher, Quantum Mechanics (3. Ed.) Section 9.1,9.92
Theoretical	Operators in Quantum Mechanics and Their Algebras
Preparation Work	Eugen Merzbacher, Quantum Mechanics (3. Ed.), Section 9.3-9.6
Final Exam	Final Exam
	Preparation Work Intermediate Exam Theoretical Preparation Work Theoretical Preparation Work Theoretical Preparation Work Theoretical Preparation Work Theoretical Preparation Work Theoretical Preparation Work

Workload Calculation

Activity	Quantity	Preparation	Duration	Total Workload		
Lecture - Theory	14	6	3	126		
Assignment	12	3	3	72		
Quiz	4	1	1	8		
Midterm Examination	1	7	5	12		
Final Examination	1	7	5	12		
	230					
	9					
*25 hour workload is accepted as 1 ECTS						

Learning Outcomes

1	To be able to explain the differences between the point of views of quantum mechanics and classical mechanics in the meaning of understanding the nature
2	To be able to discuss the meaning of wave function in quantum mechanics
3	To be able to solve the bound state and scattering problems in one dimension
4	To be able to construct the algebra of harmonic oscillator and explain the importance of harmonic oscillator in quantum mechanics
5	To be able to solve the problems approximately by WKB method which can not be solved exactly

Programme Outcomes (Physics Master)

1	The student should conceive the concepts in physics and may apply them on her/his own
2	The student should be able to conceive the relationship between the different physics laws and integrity of them and apply them in solving different physics problems

3	The student should know the basic principles of classical, quantum and relativistic physics and use them in the solutions of problems
4	The student should be able to do research in a specific area of physics
5	The student should be able to prepare reports on papers on the subject of her/his research and present her/his research subject in scientific conferences
6	The student should be able to explain the relationship between complicated problems and basic physics laws.
7	The student should be able to use computers for solving complicated physics problems
8	The student should be able to interrelate between the theory and the experiment. If she/he is experimentalist he/she has to explain the theory behind her/his work. If she /he is a theorist she/he should has to know the experiments in her/his subject.

Contribution of Learning Outcomes to Programme Outcomes 1: Very Low, 2: Low, 3: Medium, 4: High, 5: Very High

	L1	L2	L3	L4	L5
P1	5	5	3	5	3
P2	4	4	4	5	4
P3	5	5	4	5	4
P4	3	3	2	4	3
P5	1	1	1	1	1
P6	5	5	3	5	3
P7	1	1	1	2	1
P8	1	4	2	3	2

