

AYDIN ADNAN MENDERES UNIVERSITY COURSE INFORMATION FORM

Course Title		Condensed M	latter Physics	I 7					
Course Code		FZK503		Couse Level		Second Cycle (Master's Degree)			
ECTS Credit	6	Workload	150 <i>(Hours)</i>	Theory	3	Practice	0	Laboratory	0
Objectives of the Course		To educate and help students acquire abilities to understand structure of condensed matter, structure of cyristal stricter and their related properties, motion of electrons in matter, energy bands in semiconductors and metals, application to electronic devices.							
Course Content		Crystal structures and symmetry of crystals, crystal bonding and its relation to their properties, motion of electrons in matter, Application to electronics							
Work Placement		N/A							
Planned Learning Activities and Teaching Methods			Explanation Problem So		tion), Discussio	on, Case St	udy, Individual Stu	dy,	
Name of Lecturer(s) Assoc. Prof. Yelda KADIOČ		iLU							

Assessment Methods and Criteria

Method	Quantity	Percentage (%)	
Midterm Examination	1	20	
Final Examination	1	35	
Quiz	2	10	
Attending Lectures	14	28	
Assignment	7	7	

Recommended or Required Reading

- 1 Advanced Solid State Physics, P. Philips
- 2 Principles in condense matter physics, P.M.Chaikin, T.C. Lubensky

leek	Weekly Detailed Cour	se Contents				
1	Theoretical	Simetry and definition of Crystal Lattices(Summary)				
	Preparation Work	Solid State Physics N.E. Ashcroft, N.D.Mermin Ch.4-7				
2	Theoretical	Crystal Binding and its properties				
	Preparation Work	Solid State Physics N.E. Ashcroft, N.D.Mermin, Ch.19-20				
3	Theoretical	X-Ray Diffraction				
	Preparation Work	Solid State Physics N.E. Ashcroft, N.D.Mermin, Ch.22-25				
4	Theoretical	Crystal Symmetry and its properties				
	Preparation Work	Solid State Physics N.E. Ashcroft, N.D.Mermin, Ch.6				
5	Theoretical	Ionic bond and its Properties				
	Preparation Work	Solid State Physics, G.Burns ch.7				
6	Theoretical	Covalent bonding and its properties				
	Preparation Work	Solid State Physics, G.Burns ch.8				
7	Theoretical	Metallic Binding, Properties of metals, Free electron Drude model				
	Preparation Work	Solid State Physics, G.Burns, Ch.8				
8	Intermediate Exam	Midterm Exam				
9	Theoretical	DC conductivity, Wiedeman-Franz Law, and Frequency related Conductivity				
	Preparation Work	Solid State Physics N.E. Ashcroft, N.D.Mermin, Ch.9				
10	Theoretical	Quantum Physics of Metals				
	Preparation Work	Solid State Physics N.E. Ashcroft, Solid State Physics, G.Burns, Ch.9				
11	Theoretical	Band Theory				
	Preparation Work	Solid State Physics N.E. Ashcroft, N.D.Mermin, Ch.17				
12	Theoretical	Wave functions and energy levels in metals				
	Preparation Work	Solid State Physics N.E. Ashcroft, N.D.Mermin, Ch.15				
13	Theoretical	Semiconductors, Bands in Semiconductors and related concepts				
	Preparation Work	Solid State Physics N.E. Ashcroft, N.D.Mermin, ch.15				

14	Theoretical	p-n, metal-semiconductor junctions and its physics					
Preparation Work Solid State Physics, G.Burns, Ch.10							
15	Theoretical	Effective mass, Holes and related concepts					
	Preparation Work	Solid State Physics, G.Burns, Ch. 10/C					
16	Final Exam	Final exam					

Workload Calculation

Hondou Galculation					
Activity	Quantity	Preparation	Duration	Total Workload	
Lecture - Theory	14	4	3	98	
Seminar	5	3	2	25	
Quiz	2	2	0.5	5	
Midterm Examination	1	6	3	9	
Final Examination	1	10	3	13	
	150				
[Total Workload (Hours) / 25*] = ECTS 6					
*25 hour workload is accorded on 1 FCTC					

*25 hour workload is accepted as 1 ECTS

Learning Outcomes

To be able to define crystal structures and their general properties.
To be abe to relate crystal binding and its properties
To be able to explain the relation between quantum physics and energy bands
To be able to explain the properties and applications of semiconductors with relating quantum mechanics
To be able to explain electronical applications of crystals

Programme Outcomes (Physics Master)

1	The student should conceive the concepts in physics and may apply them on her/his own
2	The student should be able to conceive the relationship between the different physics laws and integrity of them and apply them in solving different physics problems
3	The student should know the basic principles of classical, quantum and relativistic physics and use them in the solutions of problems
4	The student should be able to do research in a specific area of physics
5	The student should be able to prepare reports on papers on the subject of her/his research and present her/his research subject in scientific conferences
6	The student should be able to explain the relationship between complicated problems and basic physics laws.
7	The student should be able to use computers for solving complicated physics problems
8	The student should be able to interrelate between the theory and the experiment. If she/he is experimentalist he/she has to explain the theory behind her/his work. If she /he is a theorist she/he should has to know the experiments in her/his subject.

Contribution of Learning Outcomes to Programme Outcomes 1:Very Low, 2:Low, 3:Medium, 4:High, 5:Very High

	L1	L2	L3	L4	L5
P1	5	4	5	5	3
P2	5	4	5	5	4
P3	3	4	4	3	3
P4	4	3	5	4	4
P5	4	3	3	4	2
P6	4	4	2	4	4
P7	2	4	3	2	3
P8	2	3	2	2	5

