

AYDIN ADNAN MENDERES UNIVERSITY COURSE INFORMATION FORM

Course Title		Advanced Atomic and Molecular Physics I							
Course Code		FZK523		Couse Level		Second Cycle (Master's Degree)			
ECTS Credit	6	Workload	150 <i>(Hours)</i>	Theory	3	Practice	0	Laboratory	0
Objectives of the Course		To teach atom structure, atomic spectroscopy and application fields of atomic spectroscopy.							
Course Content		Single-electron and multi-electron atom structures, fine and hyperfine structure, Zeeman effect, Hund's rules, perturbation, atomic spectroscopy and its applications.							
Work Placement									
Planned Learning Activities		and Teaching	Methods	Explanation	(Presenta	tion), Discussio	on, Individua	al Study, Problem	Solving
Name of Lecturer(s)									

Assessment Methods and Criteria

Method	Quantity	Percentage (%)	
Midterm Examination	1	15	
Final Examination	1	60	
Attending Lectures	14	10	
Assignment	5	15	

Recommended or Required Reading

1	Atom ve molekül fiziği, B. H. Bransden and C. J. Joachain
2	Atomic Phyics, Dimitry Budker, Derek F. Kimball, David P. Demille
3	Advances in atomic, molecular and optical physics, Benjamin Bederson, Harbert Walther
4	Introduction to Quantum Mechanics, R. H. Dicke, J. P. Wittke

/eek	Weekly Detailed Cour	se Contents				
1	Theoretical	Introduction of atomic physics and atomic structure				
	Preparation Work	Physics of Atoms and Molecules, B. H. Bransden and C. J. Joachain Chapter 1 and 2				
2	Theoretical	One-electron atoms				
	Preparation Work	Physics of Atoms and Molecules, B. H. Bransden and C. J. Joachain Chapter 3				
3	Theoretical	Interaction of one-electron atoms with electromagnetic radiation				
	Preparation Work	Physics of Atoms and Molecules, B. H. Bransden and C. J. Joachain Chapter 4				
4	Theoretical	Many-electron atoms				
	Preparation Work	Physics of Atoms and Molecules, B. H. Bransden and C. J. Joachain Chapter 6 and 7				
5	Theoretical	Interaction of many-electron atoms with electromagnetic radiation				
	Preparation Work	Physics of Atoms and Molecules, B. H. Bransden and C. J. Joachain Chapter 8				
6	Theoretical	Thin and extremely thin structure, Zeeman effect				
	Preparation Work	Physics of Atoms and Molecules, B. H. Bransden and C. J. Joachain Section 5.1 and 5.2				
7	Theoretical	Spin-orbit interaction				
	Preparation Work	Physics of Atoms and Molecules, B. H. Bransden and C. J. Joachain Section 5.3				
8	Intermediate Exam	Midterm Exam				
9	Theoretical	Stark effect				
	Preparation Work	Atom ve molekül fiziği, B. H. Bransden and C. J. Joachain Section 5. 4				
10	Theoretical	Hund rules				
	Preparation Work	Atom ve molekül fiziği, B. H. Bransden and C. J. Joachain Chapter 5 section 5				
11	Theoretical	Perturbation theory (summary)				
	Preparation Work	Introduction to Quantum Mechanics, R. H. Dicke, J. P. Wittke Chapter 14				

12	Theoretical	Applications of perturbation theory to atomic physics					
	Preparation Work	Introduction to Quantum Mechanics, R. H. Dicke, J. P. Wittke Chapter 14					
13	Theoretical	Atomic spectroscopy					
	Preparation Work	Atomic Phyics, Dimitry Budker, Derek F. Kimball, David P. Demille Chapter 8 section 1					
14	Theoretical	Application areas of atomic spectroscopy (I)					
	Preparation Work	Advances in atomic, molecular and optical physics, Benjamin Bederson, Harbert Walt Chapter 2					
15	Theoretical	Application areas of atomic spectroscopy II					
	Preparation Work	Advances in atomic, molecular and optical physics, Benjamin Bederson, Harbert Walther Chapter 2					
16	Final Exam	Final Exam					

Workload Calculation

Activity	Quantity	Preparation	Duration	Total Workload	
Lecture - Theory	14	2	3	70	
Assignment	7	5	2	49	
Midterm Examination	1	6	3	9	
Final Examination	1	17	5	22	
Total Workload (Hours)					
[Total Workload (Hours) / 25*] = ECTS					

*25 hour workload is accepted as 1 ECTS

Learning Outcomes

1	To be able to learn the structure of atom
2	To be able to learn the interaction of atom with magnetic field
3	To be able to analyse the interactions occuring in the atom
4	To be able to learn the difference between the quantum mechanics and the classical mechanics
5	To be able to learn the atomic spectroscopy concept and analysing the applications of It.

Programme Outcomes (Physics Master)

1	The student should conceive the concepts in physics and may apply them on her/his own				
2	The student should be able to conceive the relationship between the different physics laws and integrity of them and apply them in solving different physics problems				
3	The student should know the basic principles of classical, quantum and relativistic physics and use them in the solutions of problems				
4	The student should be able to do research in a specific area of physics				
5	The student should be able to prepare reports on papers on the subject of her/his research and present her/his research subject in scientific conferences				
6	The student should be able to explain the relationship between complicated problems and basic physics laws.				
7	The student should be able to use computers for solving complicated physics problems				
8	The student should be able to interrelate between the theory and the experiment. If she/he is experimentalist he/she has to explain the theory behind her/his work. If she /he is a theorist she/he should has to know the experiments in her/his subject.				

Contribution of Learning Outcomes to Programme Outcomes 1: Very Low, 2: Low, 3: Medium, 4: High, 5: Very High

	L1	L2	L3	L4	L5
P1	5	5	5	5	5
P2	4	4	4	5	5
P3	4	4	4	5	5
P4	4	4	4	4	4
P5	3	3	3	3	4
P6	4	4	4	4	5
P7	2	2	2	2	4
P8	3	3	3	3	5

