

AYDIN ADNAN MENDERES UNIVERSITY COURSE INFORMATION FORM

Course Title	Magnetic Res	onance I						
Course Code	FZK525		Couse Level		Second Cycle (Master's Degree)			
ECTS Credit 6	Workload	150 <i>(Hours)</i>	Theory	3	Practice	0	Laboratory	0
Objectives of the Course To teach the fundament		undamental p	rinciples o	of magnetic re	sonsance.			
Course Content	Motion equations of spin systems, spectrocopy and magnetic resonance concept, experimental met of magnetic resonance.					methods		
Work Placement								
Planned Learning Activities and Teaching Methods			Explanat	tion (Presenta	tion), Discussi	on, Individua	al Study, Problem	Solving
Name of Lecturer(s)								

Assessment Methods and Criteria

Method	Quantity	Percentage (%)	
Midterm Examination	1	15	
Final Examination	1	60	
Attending Lectures	14	10	
Assignment	5	15	

Recommended or Required Reading

- 1 Manyetik rezonans, Fevzi Apaydın
- 2 Introductin to magnetic resonance, A. Carrington, A. D. Mclachlan

Week Weekly Detailed Course Contents

WEEK	Weekly Detailed Coul					
1	Theoretical	Quantum mechanical theory				
	Preparation Work	Manyetik rezonans, Fevzi Apaydın Chapter 2				
2	Theoretical	Motion equation of isolated spin systems				
	Preparation Work	Manyetik rezonans, Fevzi Apaydın Section 3.1				
3	Theoretical	Motion equation of unisolated spin systems				
	Preparation Work	Manyetik rezonans, Fevzi Apaydın Section 3.2				
4	Theoretical	Magnetic susceptibility				
	Preparation Work	Manyetik rezonans, Fevzi Apaydın Section 3.3				
5	Theoretical	Absorption energy of spin system, transition effects				
	Preparation Work	Manyetik rezonans, Fevzi Apaydın Section 3.4, 3.5				
6	Theoretical	Investigation of spin system by quantum mechanical methods				
	Preparation Work	Manyetik rezonans, Fevzi Apaydın Section 4.1, 4.2				
7	Theoretical	Transition probability, linewidth, temperature dependent of saturated state				
	Preparation Work	Manyetik rezonans, Fevzi Apaydın Section 4.3, 4.4, 4.5				
8	Intermediate Exam	Midterm Exam				
9	Theoretical	Spectroscopy and magnetic resonance				
	Preparation Work	Manyetik rezonans, Fevzi Apaydın Section 1.1				
10	Theoretical	Basic principles of magnetic resonance				
	Preparation Work	Manyetik rezonans, Fevzi Apaydın Section 1.3				
11	Theoretical	Experimental techniques of magnetic resonance, EPR and NMR spectrometer				
	Preparation Work	Manyetik rezonans, Fevzi Apaydın Section 1.4				
12	Theoretical	Technique of continuous wave NMR and EPR				
	Preparation Work	Manyetik rezonans, Fevzi Apaydın Section 5.1, 5.2				
13	Theoretical	Phase-sensitive detector				
	Preparation Work	Manyetik rezonans, Fevzi Apaydın Section 5.3, 5.4				

14	Theoretical	Mechanism of pulsed spectrometer				
	Preparation Work	Manyetik rezonans, Fevzi Apaydın Section 5.5				
15	Theoretical	Measurement techniques of relaxation times				
	Preparation Work	Manyetik rezonans, Fevzi Apaydın Section 5.6				
16	Final Exam	Final Exam				

Workload Calculation

Workload Galgalation					
Activity	Quantity	Preparation	Duration	Total Workload	
Lecture - Theory	14	2	3	70	
Assignment	5	3	2	25	
Seminar	2	3	3	12	
Midterm Examination	1	15	3	18	
Final Examination	1	22	3	25	
	150				
[Total Workload (Hours) / 25*] = ECTS					
*05 hours would and in accounted on 4 FOTO					

*25 hour workload is accepted as 1 ECTS

Learning Outcomes

1	To be able to learn motion of isolated spin systems in magnetic field
2	To be able to understand resonance condition.
3	To be able to learn spectrum concept.
4	To be able to understand the importance of the use of magnetic resonance in experimental
5	To be able to examine the spin systems with quantum mechanical methods

Programme Outcomes (Physics Master)

1	The student should conceive the concepts in physics and may apply them on her/his own
2	The student should be able to conceive the relationship between the different physics laws and integrity of them and apply them in solving different physics problems
3	The student should know the basic principles of classical, quantum and relativistic physics and use them in the solutions of problems
4	The student should be able to do research in a specific area of physics
5	The student should be able to prepare reports on papers on the subject of her/his research and present her/his research subject in scientific conferences
6	The student should be able to explain the relationship between complicated problems and basic physics laws.
7	The student should be able to use computers for solving complicated physics problems
8	The student should be able to interrelate between the theory and the experiment. If she/he is experimentalist he/she has to explain the theory behind her/his work. If she /he is a theorist she/he should has to know the experiments in her/his subject.

Contribution of Learning Outcomes to Programme Outcomes 1:Very Low, 2:Low, 3:Medium, 4:High, 5:Very High

	L1	L2	L3	L4	L5
P1	5	5	5	5	5
P2	3	3	4	4	4
P3	4	4	4	4	4
P4	4	4	5	5	5
P5	3	3	4	5	4
P6	4	4	4	4	3
P7	5	5	5	5	5
P8	4	4	5	5	3

