

AYDIN ADNAN MENDERES UNIVERSITY COURSE INFORMATION FORM

Course Title		Functional Analysis For Physicists							
Course Code		FZK527		Couse Level		Second Cycle (Master's Degree)			
ECTS Credit	6	Workload	150 (Hours)	Theory	3	Practice	0	Laboratory	0
Objectives of the Course		Description of functional analysis which is the mathematical basis of quantum mechanics							
Course Content		Linear spaces, linear operators, operator algebra, apllication to quantum mechanics							
Work Placement									
Planned Learning Activities and Teaching Methods			Explanation	n (Presenta	tion), Discussi	on, Individua	al Study, Problem	Solving	
Name of Lecture	r(s)								

Assessment Methods and Criteria					
Method	Quantity	Percentage (%)			
Midterm Examination	1	20			
Final Examination	1	30			
Quiz	2	8			
Attending Lectures	14	28			
Assignment	14	14			

Recommended or Required Reading				
1	Linear Operators for Quantum mechanics, T. F. Jordan, 1997, Dover, New York			
2	Theory of Linear Operators in Hilbert Space, N.I. Akhiezer, I.M.Glazman, 1993, Dover, NewYork			
3	Introductory Functional Analysis with Applications, Erwin Kreyzig			
4	Calculus, T.M. Apostol, 2.ed, 1967, New York, John Wiley Sons			

Week	Weekly Detailed Course Contents							
1	Theoretical	Metric spaces						
	Preparation Work	Apostol T.M., Calculus, Chapter2						
2	Theoretical	Normed spaces, Banach spaces						
	Preparation Work	Kreyzig E, Introductory Functional Analysis with Applications, Chapter2						
3	Theoretical	Inner product spaces and Hilbert spaces						
	Preparation Work	Thomas F., Linear Operators for Quantum mechanics, Section 1.3						
4	Theoretical	Linear functionals						
	Preparation Work	Thomas F., Linear Operators for Quantum mechanics, Section 1.4						
5	Theoretical	Bounded linear operators						
	Preparation Work	Thomas F., Linear Operators for Quantum mechanics, Section 2.1-2,3						
6	Theoretical	Projection operators						
	Preparation Work	Thomas F., Linear Operators for Quantum mechanics, Section 2.10						
7	Theoretical	Unitary operators						
	Preparation Work	Akhiezer L.I, Glazman I.M., Theory of Linear Operators in Hilbert Space, Section 3.35						
8	Intermediate Exam	Midterm Exam						
9	Theoretical	Closed operators and adjoint of an operator						
	Preparation Work	Akhiezer L.I, Glazman I.M., Theory of Linear Operators in Hilbert Space, Section 4.38						
10	Theoretical	Self-adjoint operators						
	Preparation Work	Akhiezer L.I, Glazman I.M., Theory of Linear Operators in Hilbert Space, Section 4.39						
11	Theoretical	Concept of spectrum						
	Preparation Work	Akhiezer L.I, Glazman I.M., Theory of Linear Operators in Hilbert Space, Section 4.41; Thomas F., Linear Operators for Quantum mechanics, Section 3.12, 3.13						
12	Theoretical	Core of an operator						
	Preparation Work	Akhiezer L.I, Glazman I.M., Theory of Linear Operators in Hilbert Space, Section 4.44						
13	Theoretical	Spectral analysis of unitary and self-adjoint operators						
	Preparation Work	Thomas F., Linear Operators for Quantum mechanics, Section 2.14						

14	Theoretical	Spectral analysis of unitary and self-adjoint operators				
	Preparation Work	Thomas F., Linear Operators for Quantum mechanics, Section 2.15				
15	Theoretical	Self-adjoint extension of operators				
	Preparation Work	Akhiezer L.I, Glazman I.M., Theory of Linear Operators in Hilbert Space, Chapter5				
16	Final Exam	Final Exam				

Workload Calculation				
Activity	Quantity	Preparation	Duration	Total Workload
Lecture - Theory	14	1	3	56
Assignment	12	1	2	36
Quiz	4	1	1	8
Midterm Examination	1	17	5	22
Final Examination	1	23	5	28
Total Workload (Hours)				
[Total Workload (Hours) / 25*] = ECTS				
*25 hour workload is accepted as 1 ECTS				

Learning Outcomes					
1	To be able to express the definition of linear vector spaces				
2	To be able to perform the spectral decomposition of self-adjoint operators				
3	To be able to explain the operator core concept				
4	To be able to explain the difference between the concepts of state and observable				
5	To be able to apply the functional analysis methods to quantum mechanical problems				

Programme Outcomes (Physics Master) The student should conceive the concepts in physics and may apply them on her/his own The student should be able to conceive the relationship between the different physics laws and integrity of them and apply 2 them in solving different physics problems The student should know the basic principles of classical, quantum and relativistic physics and use them in the solutions of 3 The student should be able to do research in a specific area of physics 4 The student should be able to prepare reports on papers on the subject of her/his research and present her/his research 5 subject in scientific conferences 6 The student should be able to explain the relationship between complicated problems and basic physics laws. 7 The student should be able to use computers for solving complicated physics problems The student should be able to interrelate between the theory and the experiment. If she/he is experimentalist he/she has to

explain the theory behind her/his work. If she /he is a theorist she/he should has to know the experiments in her/his subject.

Contribution of Learning Outcomes to Programme Outcomes 1: Very Low, 2:Low, 3:Medium, 4:High, 5: Very High 11 12 13 14 15

		LZ	LJ		LJ
P1	5	5	5	5	5
P2	2	2	4	4	2
P3	3	3	4	4	4
P4	3	3	3	3	3
P5	1	1	2	1	1
P6	3	3	3	4	3
P7	1	1	1	1	1
P8	2	1	3	1	1

8