

AYDIN ADNAN MENDERES UNIVERSITY COURSE INFORMATION FORM

Course Title	Magnetic Res	onance II						
Course Code	FZK528		Couse Level		Second Cycle (Master's Degree)			
ECTS Credit 6	Workload	150 <i>(Hours)</i>	Theory	3	Practice	0	Laboratory	0
Objectives of the Course To teach application field		ication fields o	of magnetic r	esonance)			
Course Content Nuclear mage applications		etic resonance	e, electron p	aramagne	etic resonance, c	double reso	nance, MR and its	
Work Placement								
Planned Learning Activities and Teaching Methods			Explanation	(Present	tation), Discussio	on, Individu	al Study	
Name of Lecturer(s)								

Assessment Methods and Criteria

Method	Quantity	Percentage (%)	
Midterm Examination	1	15	
Final Examination	1	60	
Attending Lectures	14	10	
Assignment	5	15	

Recommended or Required Reading

- 1 Magnetic Resonance
- 2 The principles of nuclear magnetism, A. Abragam

Week Weekly Detailed Course Contents

week	weekly Detailed Cour	se contents			
1	Theoretical Nuclear magnetic resonance at solids				
	Preparation Work	Manyetik rezonans, Fevzi Apaydın Section 6. 1			
2	Theoretical	Dipol dipol interaction, second moment			
	Preparation Work	Manyetik rezonans, Fevzi Apaydın Section 6.2, 6.3, 6.4, 6.5			
3	Theoretical	Nuclear magnetic resonance at liquids			
	Preparation Work	Manyetik rezonans, Fevzi Apaydın Section 7. 1			
4	Theoretical	Chemical shift, spin spin coupling			
	Preparation Work	Manyetik rezonans, Fevzi Apaydın Section 7.2, 7.3, 7.4, 7.5			
5	Theoretical	Electron paramagnetic resonance at liquids			
	Preparation Work	Manyetik rezonans, Fevzi Apaydın Section 8. 1			
6	Theoretical	g factor, hyperfine splitting			
	Preparation Work	Manyetik rezonans, Fevzi Apaydın Section 8.2, 8.3, 8.4, 8.5			
7	Theoretical	Electron magnetic resonance in single crystals			
	Preparation Work	Manyetik rezonans, Fevzi Apaydın Section 9.1 9.2, 9.3, 9.4, 9.5			
8	Intermediate Exam	Midterm Exam			
9	Theoretical	g tensor, A tensor, quadrupole interactions			
	Preparation Work	Manyetik rezonans, Fevzi Apaydın Section 9.6, 9.7, 9.8, 9.9			
10	Theoretical	Double resonance			
	Preparation Work	Manyetik rezonans, Fevzi Apaydın Section 10. 1			
11	Theoretical	Dynamic nuclear polarization			
	Preparation Work	Manyetik rezonans, Fevzi Apaydın Section 10.2			
12	Preparation Work	Manyetik rezonans, Fevzi Apaydın Section 10.3			
13	Theoretical	NMR imaging			
	Preparation Work	Manyetik rezonans, Fevzi Apaydın Section 12.1, 12.2, 12.3			
14	Theoretical	NMR relaxation			
	Preparation Work	Manyetik rezonans, Fevzi Apaydın Section 12.4, 12.5, 12.6			

15	Theoretical	Clinical applications of NMR imaging
	Preparation Work	Manyetik rezonans, Fevzi Apaydın Section 12.7, 12.8
16	Final Exam	Final Exam

Workload Calculation

Activity	Quantity	Preparation	Duration	Total Workload
Lecture - Theory	14	3	3	84
Assignment	10	2	1	30
Term Project	1	10	0	10
Midterm Examination	1	10	2	12
Final Examination	1	12	2	14
Total Workload (Hours)				
		[Total Workload (Hours) / 25*] = ECTS	6
*25 hour workload is apported on 1 ECTS				

*25 hour workload is accepted as 1 ECTS

Learning Outcomes

1	To be able to understand nuclear magnetic resonance and its applications	
2	To be able to learn electron paramagnetic resonance and its applications	
3	To be able to learn the g factor and the hyperfine constant	
4	To be able to learn double resonance and its applications	
5	To be able to learn MR imaging and its applications	

Programme Outcomes (Physics Master)

1	The student should conceive the concepts in physics and may apply them on her/his own
2	The student should be able to conceive the relationship between the different physics laws and integrity of them and apply them in solving different physics problems
3	The student should know the basic principles of classical, quantum and relativistic physics and use them in the solutions of problems
4	The student should be able to do research in a specific area of physics
5	The student should be able to prepare reports on papers on the subject of her/his research and present her/his research subject in scientific conferences
6	The student should be able to explain the relationship between complicated problems and basic physics laws.
7	The student should be able to use computers for solving complicated physics problems
8	The student should be able to interrelate between the theory and the experiment. If she/he is experimentalist he/she has to explain the theory behind her/his work. If she /he is a theorist she/he should has to know the experiments in her/his subject.

Contribution of Learning Outcomes to Programme Outcomes 1: Very Low, 2: Low, 3: Medium, 4: High, 5: Very High

	L1	L2	L3	L4	L5
P1	5	5	5	5	5
P2	4	4	4	4	4
P3	4	4	4	4	4
P4	5	5	5	5	5
P5	4	4	3	4	4
P6	4	4	4	4	4
P7	4	4	5	4	4
P8	5	5	5	5	5

