

AYDIN ADNAN MENDERES UNIVERSITY COURSE INFORMATION FORM

Course Title	ourse Title Luminescence in Solids and Applications I							
Course Code	FZK531		Couse Level		Second Cycle (Master's Degree)			
ECTS Credit 6	Workload	150 <i>(Hours)</i>	Theory	3	Practice	0	Laboratory	0
Objectives of the Course	To get informati	o get information about the fundamental principles of luminescence in solids and its applications.						
Course Content	Fundamentals of luminescence. Emission and excitation mechanism in luminescent materials. Non radiactive transitions. Energy transfer. Luminescence applications.							
Work Placement N/A								
Planned Learning Activities and Teaching Methods		lethods	Explanation	(Presentat	tion), Experim	ent, Individua	al Study, Problem	Solving
Name of Lecturer(s)								

Assessment Methods and Criteria

Method	Quantity Percentage (%)	
Midterm Examination	1	40
Final Examination	1	40
Assignment	7	20

Recommended or Required Reading

1	Luminescent materials. G.Blasse, B.C. Grabmaier.
2	Luminescent materials and applications. Adrian Kitai.
3	Luminescence from theory to applications. Cees Ronda
4	Thermoluminescence of solids. S.W.S McKeever
5	Optically stimulated luminescence: Fundamentals and applications. E.G. Yukihara, S.W.S McKeever
6	Photoluminescence and Cathodoluminescence. Lyuji Ozawa

Week	Weekly Detailed Co	se Contents			
1	Theoretical	Introduction to luminescent materials			
2	Theoretical	Fundamentals of luminescence			
3	Theoretical	Excitation in luminescent materials I			
4	Theoretical	Excitation in luminescent materials II			
5	Theoretical	Emission in luminescent materials I			
6	Theoretical	Emission in luminescent materials II			
7	Theoretical	Nonradiative transitions			
8	Theoretical	Midterm exam			
9	Theoretical	Energy transfer			
10	Theoretical	Thermoluminescence			
11	Theoretical	Optically stimulated luminescence			
12	Theoretical	Photoluminesce			
13	Theoretical	Radioluminescence			
14	Theoretical	Cathodoluminescence			
15	Theoretical	Other applications			
16	Theoretical	Final exam			

Workload Calculation

Activity	Quantity	Preparation	Duration	Total Workload
Lecture - Theory	14	3	3	84
Assignment	7	3	3	42
Midterm Examination	1	7	5	12

O	1	
Course		Form

Final Examination	1		7	5	12
			To	otal Workload (Hours)	150
[Total Workload (Hours) / 25*] = ECTS				6	
*25 hour workload is accepted as 1 ECTS					

1	0
Learning	Outcomes

Lean	ing Outcomes
1	Students can understand the luminescence phenomenon.
2	Students can express the emission and excitation mechanism in luminescent materials.
3	Students can explain energy transfers, radiative and nonradiative transitions and show them on diagram.
4	Students can tell the general application areas of luminescence.
5	Students can identify the types of luminescence.

Programme Outcomes (Physics Master)

1	The student should conceive the concepts in physics and may apply them on her/his own
2	The student should be able to conceive the relationship between the different physics laws and integrity of them and apply them in solving different physics problems
3	The student should know the basic principles of classical, quantum and relativistic physics and use them in the solutions of problems
4	The student should be able to do research in a specific area of physics
5	The student should be able to prepare reports on papers on the subject of her/his research and present her/his research subject in scientific conferences
6	The student should be able to explain the relationship between complicated problems and basic physics laws.
7	The student should be able to use computers for solving complicated physics problems
8	The student should be able to interrelate between the theory and the experiment. If she/he is experimentalist he/she has to explain the theory behind her/his work. If she /he is a theorist she/he should has to know the experiments in her/his subject.

Contribution of Learning Outcomes to Programme Outcomes 1:Very Low, 2:Low, 3:Medium, 4:High, 5:Very High

	L1	L2	L3	L4	L5
P1	4	3	4	4	5
P2	5	4	4	3	3
P3	4	3	3	5	4
P4	3	5	5	5	4
P5	3	5	3	4	3
P6	4	4	2	3	4
P7	2	2	2	2	5
P8	4	3	3	3	4