

AYDIN ADNAN MENDERES UNIVERSITY COURSE INFORMATION FORM

Course Title	Luminescenc	uminescence in Solids and Applications II							
Course Code	FZK532	FZK532		Couse Level		Second Cycle (Master's Degree)			
ECTS Credit 6	Workload	150 <i>(Hours)</i>	Theory	3	Practice	0	Laboratory	0	
Objectives of the Course	To get inform	To get information about the fundamental principles of luminescence in solids and its applications.							
Course Content	Emission and technology.	Emission and excitation mechanism in phosphors. Application areas of luminescent materials in technology.					ı		
Work Placement	N/A								
Planned Learning Activities and Teaching Methods			Explanation	(Presenta	tion), Experime	ent, Individua	al Study, Problem	Solving	
Name of Lecturer(s)									

Assessment Methods and Criteria

Method	Quantity	Percentage (%)	
Midterm Examination	1	40	
Final Examination	1	40	
Assignment	7	20	

Recommended or Required Reading

1	Luminescent materials. G.Blasse, B.C. Grabmaier.
2	Luminescent materials and applications. Adrian Kitai.
3	Luminescence from theory to applications. Cees Ronda.

Week	Weekly Detailed Course Contents					
1	Theoretical	Emission mechanism in phosphors I				
2	Theoretical	Emission mechanism in phosphors II				
3	Theoretical	Quantum dots and nanophosphors I				
4	Theoretical	Quantum dots and nanophosphors II				
5	Theoretical	Phosphors for Plasma Display Panels				
6	Theoretical	Quantum-Splitting Systems				
7	Theoretical	Upconversion Phosphors				
8	Theoretical	Midterm exam				
9	Theoretical	Scintillators I				
10	Theoretical	Scintillators II				
11	Theoretical	LED materials and devices				
12	Theoretical	Luminescent Materials for LEDs				
13	Theoretical	Luminescent Materials for Phosphor–Converted LEDs				
14	Theoretical	Experimental Techniques I				
15	Theoretical	Experimental Techniques II				
16	Theoretical	Final exam				

Workload Calculation

Activity	Quantity	Preparation		Duration	Total Workload
Lecture - Theory	14		3	3	84
Assignment	7		3	3	42
Midterm Examination	1		7	5	12
Final Examination	1		7	5	12
Total Workload (Hours)					
[Total Workload (Hours) / 25*] = ECTS					6
*25 hour workload is accepted as 1 ECTS					

Learr	ning Outcomes					
1	Students can realize the emission and excitation phenomena in phosphors.					
2	Students can express the technological application areas of luminescent materials.					
3	Students can learn spectroscopic techniques used to measure different features of electromagnetic radiation.					
4	Students can relate luminescence with other branches of physics.					
5	Students can have knowledge about quantum dots and nanophosphors					

Programme Outcomes (Physics Master)

-						
1	The student should conceive the concepts in physics and may apply them on her/his own					
2	The student should be able to conceive the relationship between the different physics laws and integrity of them and apply them in solving different physics problems					
3	The student should know the basic principles of classical, quantum and relativistic physics and use them in the solutions of problems					
4 The student should be able to do research in a specific area of physics						
5	5 The student should be able to prepare reports on papers on the subject of her/his research and present her/his research subject in scientific conferences					
6	The student should be able to explain the relationship between complicated problems and basic physics laws.					
7	7 The student should be able to use computers for solving complicated physics problems					
8	The student should be able to interrelate between the theory and the experiment. If she/he is experimentalist he/she has to explain the theory behind her/his work. If she /he is a theorist she/he should has to know the experiments in her/his subject.					

Contribution of Learning Outcomes to Programme Outcomes 1:Very Low, 2:Low, 3:Medium, 4:High, 5:Very High

	L1	L2	L3	L4	L5	
P1	5	4	5	5	4	
P2	5	5	4	5	4	
P3	4	3	4	4	5	
P4	4	5	5	3	3	
P5	3	2	3	4	3	
P6	4	3	4	2	2	
P7	2	4	4	3	4	
P8	3	3	3	4	4	