

AYDIN ADNAN MENDERES UNIVERSITY COURSE INFORMATION FORM

Course Title		Quantum Stat	istical Mechar	nics					
Course Code		FZK601		Couse Level		Third Cycle (Doctorate Degree)			
ECTS Credit	ECTS Credit 7 Workload 176 (Hours)		176 <i>(Hours)</i>	Theory	3	Practice	0	Laboratory	0
Objectives of the Course		The aim of this lecture is to explain basic concepts of quantum statistical mechanics, density matrix, and quantum partition function, ideal Bose and Fermi gases; Bose-Einstein condensation.							
Course Content		Quantum stati condensation, phenomena, i	stical mechan Ising model, nteracting par	ics and de general th ticles, inclu	generate mat eory of equili iding non-ide	tter, ideal gas o brium including al gases and f	of quantum p g phase trans erromagnetis	particles, Bose-gas sitions and critical sm.	s and BE
Work Placement									
Planned Learning Activities		and Teaching	Methods	Explanation	on (Presentat	tion), Discussio	on, Individual	Study, Problem Study	Solving
Name of Lecturer(s)									

Assessment Methods and Criteria

Method	Quantity	Percentage (%)	
Midterm Examination	1	20	
Final Examination	1	30	
Quiz	2	8	
Attending Lectures	14	28	
Assignment	14	14	

Recommended or Required Reading

1	Thermodynamics and Statistical Me	chanics - W. Greiner, L. Neise, H. Stöcker
2	Statical Mechanics - R. K. Pathria	
3	Statical Mechanics - Kersan Huang	

Week	Weekly Detailed Course Contents					
1	Theoretical	Quantum statistical mechanics				
2	Theoretical	General properties of the partition function				
3	Theoretical	Approximation methods				
4	Theoretical	Variational principles				
5	Theoretical	Fermi systems				
6	Theoretical	Landau diamagnetism				
7	Theoretical	Pauli paramagnetism				
8	Intermediate Exam	Midterm Exam				
9	Theoretical	Bose systems				
10	Theoretical	The Bose-Einstein condensate				
11	Theoretical	The Ising model				
12	Theoretical	Spontaneous magnetization				
13	Theoretical	Onsager solution				
14	Theoretical	The Landau approach				
15	Theoretical	Superconductivity				
16	Final Exam	Final Exam				

Workload Calculation

Activity	Quantity	Preparation	Duration	Total Workload
Lecture - Theory	14	3	3	84
Assignment	12	2	3	60
Quiz	4	1	1	8
Midterm Examination	1	7	5	12

					oourse information i onn
Final Examination	1		7	5	12
Total Workload (Hours)					
			[Total Workload (Hours) / 25*] = ECTS	7
*25 hour workload is accepted as 1 ECTS					

Learn	ing Outcomes
1	After completion of the course student should be familiar with the relation between the phenomenological thermodynamics and the microscopic description in statistical physics.
2	To be able to independently treat problems in thermodynamics and statistical physics.
3	To be able to develop, applications in physics and other natural sciences based on thermodynamic and statistical physical principles.
4	To describe, use and develop mean field theory for first and second order phase transitions.
5	To be able to discuss the various classical ensembles and quantum ensembles
6	To be able to solve the statistical mechanics problems using ensemble theory
7	To be able to explain the connection between classical statistical mechanics and quantum statistical mechanics
8	To be able to explain the concept of density matrix

Programme Outcomes (Physics Doctorate)

1	
2	
3	
4	
5	
6	
7	
8	

Contribution of Learning Outcomes to Programme Outcomes 1: Very Low, 2: Low, 3: Medium, 4: High, 5: Very High

	L1	L2	L3	L4	L5	L6	L7	L8
P1	5	4	5	4	4	5	4	5
P2	4	4	4	5	5	4	4	4
P3	4	3	5	4	5	4	3	3
P4	3	5	4	4	3	3	4	4
P5	4	4	3	4	3	5	5	5
P6	2	3	4	3	4	4	4	4
P7	3	5	4	3	4	4	5	3
P8	4	4	3	3	2	3	3	4