

## AYDIN ADNAN MENDERES UNIVERSITY COURSE INFORMATION FORM

| Course Title                                     |   | Advanced Topics in Mathematical Physics                                                                                              |                                                                         |             |                  |                                |              |            |   |
|--------------------------------------------------|---|--------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|-------------|------------------|--------------------------------|--------------|------------|---|
| Course Code                                      |   | FZK603                                                                                                                               |                                                                         | Couse Level |                  | Third Cycle (Doctorate Degree) |              |            |   |
| ECTS Credit                                      | 7 | Workload                                                                                                                             | Workload 175 (Hours) Theory 3                                           |             |                  | Practice                       | 0            | Laboratory | 0 |
| Objectives of the Course                         |   | To get inform                                                                                                                        | To get information about the advanced subjects of mathematical physics. |             |                  |                                |              |            |   |
| Course Content                                   |   | Using matrices in physics. Fundamental tensor analysis. Some special PDE in physics. Variational calculus. Chaos. Green's functions. |                                                                         |             |                  |                                | nal          |            |   |
| Work Placement                                   |   |                                                                                                                                      |                                                                         |             |                  |                                |              |            |   |
| Planned Learning Activities and Teaching Methods |   | Methods                                                                                                                              | Explanation                                                             | (Presentat  | tion), Individua | l Study, Pro                   | blem Solving |            |   |
| Name of Lecturer(s)                              |   |                                                                                                                                      |                                                                         |             |                  |                                |              |            |   |

### **Assessment Methods and Criteria**

| Method              | Quantity | Percentage (%) |  |
|---------------------|----------|----------------|--|
| Midterm Examination | 1        | 20             |  |
| Final Examination   | 1        | 30             |  |
| Quiz                | 2        | 8              |  |
| Attending Lectures  | 14       | 28             |  |
| Assignment          | 14       | 14             |  |

### **Recommended or Required Reading**

| 1 | Mathematical Methods for Physicists. G.B. Arfken, H.J. Weber, F. Harris  |
|---|--------------------------------------------------------------------------|
| 2 | Mathematical Physics. S. Hassani                                         |
| 3 | Special functions and their applications. N. N. Lebedev                  |
| 4 | Mathematics of classical and quantum physics. F. W. Byron, R. W. Fuller. |
| 5 | Mathematics for Physicists. P. Dennery, A. Krzywicki.                    |
|   |                                                                          |

| Week | Weekly Detailed Cou | Irse Contents                               |
|------|---------------------|---------------------------------------------|
| 1    | Theoretical         | Matrices and determinants                   |
| 2    | Theoretical         | Matrices in classical and quantum mechanics |
| 3    | Theoretical         | Tensor analysis                             |
| 4    | Theoretical         | Covariant formulation of electrodynamics    |
| 5    | Theoretical         | Partial differential equations-PDE          |
| 6    | Theoretical         | The wave equation                           |
| 7    | Theoretical         | The Scrödinger equation                     |
| 8    | Theoretical         | The heat equation                           |
| 9    | Theoretical         | Integral transformations                    |
| 10   | Theoretical         | Calculus of variations-I                    |
| 11   | Theoretical         | Calculus of variations-II                   |
| 12   | Theoretical         | Nonlinear dynamics and chaos                |
| 13   | Theoretical         | Probability theory                          |
| 14   | Theoretical         | Introduction to group theory                |
| 15   | Final Exam          | Final exam                                  |

#### Workload Calculation

| Activity            | Quantity | Preparation | Duration | Total Workload |  |  |
|---------------------|----------|-------------|----------|----------------|--|--|
| Lecture - Theory    | 14       | 4           | 3        | 98             |  |  |
| Assignment          | 12       | 2           | 2        | 48             |  |  |
| Individual Work     | 4        | 2           | 1        | 12             |  |  |
| Quiz                | 4        | 1           | 0.5      | 6              |  |  |
| Midterm Examination | 1        | 2           | 3        | 5              |  |  |



| Course | e Infor | matior | Form |
|--------|---------|--------|------|
| 000100 |         |        |      |

| Final Examination                       | 1 |  | 2                 | 4                           | 6   |
|-----------------------------------------|---|--|-------------------|-----------------------------|-----|
|                                         |   |  | Тс                | otal Workload (Hours)       | 175 |
|                                         |   |  | [Total Workload ( | Hours) / 25*] = <b>ECTS</b> | 7   |
| *25 hour workload is accepted as 1 ECTS |   |  |                   |                             |     |

## Learning Outcomes

| 1 Students can express the physical problems by using tensors.                                            |  |
|-----------------------------------------------------------------------------------------------------------|--|
| 2 Partial differntial equations in physical problems can be solved by analytical or numerical techniques. |  |
| 3 Fourier and Laplace transformations can be conceived.                                                   |  |
| 4 Green's functions should be used in problems of physics.                                                |  |
| 5 Be able to express the matrix formulation of physical problems.                                         |  |
| 6 Fundamentals concepts of group theory are realized.                                                     |  |

## Programme Outcomes (Physics Doctorate)

| 1 |  |
|---|--|
| 2 |  |
| 3 |  |
| 4 |  |
| 5 |  |
| 6 |  |
| 7 |  |
| 8 |  |

# Contribution of Learning Outcomes to Programme Outcomes 1: Very Low, 2: Low, 3: Medium, 4: High, 5: Very High

|    | L1 | L2 | L3 | L4 | L5 | L6 |
|----|----|----|----|----|----|----|
| P1 | 5  | 5  | 5  | 5  | 5  | 5  |
| P2 | 5  | 5  | 4  | 5  | 4  | 4  |
| P3 | 5  | 5  | 5  | 5  | 5  | 5  |
| P4 | 2  | 2  | 3  | 4  | 3  | 3  |
| P5 | 2  | 2  | 3  | 3  | 2  | 2  |
| P6 | 4  | 4  | 3  | 4  | 4  | 5  |
| P7 | 3  | 5  | 3  | 3  | 5  | 4  |
| P8 | 3  | 3  | 3  | 3  | 3  | 3  |

