

AYDIN ADNAN MENDERES UNIVERSITY COURSE INFORMATION FORM

Course Title Analytical Mechanics								
Course Code	FZK605		Couse Level		Third Cycle (Doctorate Degree)			
ECTS Credit 7	Workload	175 (Hours)	Theory	3	Practice	0	Laboratory	0
Objectives of the Course To teach the fundamentals		undamentals	of classic	cal mechanics	at an advance	ed level.		
				ch hamilton Equering theory, to			ation Laws, Integra al fields.	ation of
Work Placement N/A								
Planned Learning Activities and Teaching Methods			Explana	ation (Presenta	tion), Individu	al Study, Pro	oblem Solving	
Name of Lecturer(s)								

Assessment Methods and Criteria							
Method	Quantity	Percentage (%)					
Midterm Examination	1	20					
Final Examination	1	30					
Quiz	2	8					
Attending Lectures	14	28					
Assignment	14	14					

Recommended or Required Reading

- 1 Classical Mechanics. H. Goldstein, C.P.Poole and J.L.Safko Edinburg 2014
- 2 Classical Mechanics. T.W. Kibble, F.H. Berkshire London 2004

Week	Weekly Detailed Cour	se Contents				
1	Theoretical	Analysis of Fundamental Principles.				
2	Theoretical	Variaitonal Principle and Lagrange Equations of Motion.				
3	Theoretical	Central force problem.				
4	Theoretical	Kinematics of rigid body motion.				
5	Theoretical	Two-body problem.				
6	Theoretical	Oscillations.				
7	Theoretical	Equations of Motion of Hamilton.				
8	Intermediate Exam	Midterm exam				
9	Theoretical	Special theory of relativity in classical mechanics.				
10	Theoretical	Canonical Transformations.				
11	Theoretical	Canonical Transformations.				
12	Theoretical	Hamilton-Jacobi theorem.				
13	Theoretical	Canonical Perturbation Theorem.				
14	Theoretical	Introduction to Lagrange and Hamilton formulation of continuous systems and fields.				
15	Final Exam	Final exam				

Workload Calculation						
Activity	Quantity	Preparation	Duration	Total Workload		
Lecture - Theory	14	3	3	84		
Assignment	12	3	2	60		
Quiz	4	2	1	12		
Midterm Examination	1	7	2	9		

Final Examination	1		8	2	10	
Total Workload (Hours)				175		
			[Total Workload (Hours) / 25*] = ECTS	7	
*25 hour workload is accepted as 1 ECTS						

Learn	Learning Outcomes						
1	To be able to write the Lagrange equations of motion of giving system						
2	To be able to analyze the conservation laws and solve problems by using them.						
3	To be able to analyze the energy, momentum, angular momentum center of mass concepts						
4	To be able to integrate the equations of motions and express the importance of them in physics.						
5	To be able to understand the importance of field concept in physics.						

Progra	Programme Outcomes (Physics Doctorate)							
1								
2								
3								
4								
5								
6								
7								
8								

Contribution of Learning Outcomes to Programme Outcomes 1:Very Low, 2:Low, 3:Medium, 4:High, 5:Very High

	L1	L2	L3	L4	L5
P1	5	5	5	5	5
P2	5	4	4	4	4
P3	2	3	4	4	5
P4	4	4	4	4	3
P5	3	4	3	3	4
P6	3	4	4	4	4
P7	2	2	2	2	2
P8	4	4	3	3	4

