

AYDIN ADNAN MENDERES UNIVERSITY COURSE INFORMATION FORM

Course Title Special Topics in Statistica		s in Statistical	Physics						
Course Code		FZK607		Couse Level		Third Cycle (Doctorate Degree)			
ECTS Credit 7		Workload	175 (Hours)	Theory	3	Practice	0	Laboratory	0
Objectives of the Course To learn magne		netic phase tra	ansitions in a	systems, cla	ssification sys	tems, simula	ation model .		
Course Content		Spin-1/2 Ising Simulations.	-Heisenberg N	/lodels, Stai	r-Triangle, D	ecoration-Itera	ation Transfo	ormations, Compu	iter
Work Placement									
Planned Learning Activities and Teaching Methods		Explanatio	n (Presentat	tion), Discussio	on, Individua	al Study, Problem	Solving		
Name of Lecturer(s)									

Assessment Methods and Criteria

Method	Quantity	Percentage (%)
Midterm Examination	1	20
Final Examination	1	37
Quiz	2	10
Attending Lectures	14	28
Assignment	1	5

Recommended or Required Reading

1 R. J. Baxter, Exactly Solved Models in Statistical Mechanics, Academic Press, London, 19	982.
--	------

- 2 J. Samuel Smart, Effective Field Theories of Magnetism, W. B. Saunders Company, London, 1966.
- 3 H. E. Stanley, Introduction to Phase Transitions and Critical Phenomena, Clarendon Press, Oxford, 1971.

Week	Weekly Detailed Co	urse Contents
1	Theoretical	Classical spin-1/2 Ising model.
2	Theoretical	Phase Transitions in Magnetic Syatems.
3	Theoretical	Classification of Phase Transitions.
4	Theoretical	Star-Triangle Transformation.
5	Theoretical	Decoration-Iteration Transformation.
6	Theoretical	Lattice Spin Models
7	Theoretical	Mean Field Approximation
8	Theoretical	Transfer Matrix Method
9	Theoretical	Spin-1/2 Ising-Heisenberg model.
10	Theoretical	Mixed spin models
11	Theoretical	Computer Simulation Methods
12	Theoretical	Monte-Carlo Simulation
13	Theoretical	Cluster Variation Method
14	Theoretical	Pair Approximation
15	Final Exam	Final Exam

Workload Calculation

Activity	Quantity	Preparation	Duration	Total Workload
Lecture - Theory	14	4	3	98
Assignment	12	2	2	48
Individual Work	4	2	1	12
Quiz	4	1	0.5	6
Midterm Examination	1	2	3	5

Courso	Information	Form
Course		FUIII

Final Examination	1		2	4	6
Total Workload (Hours)					175
[Total Workload (Hours) / 25*] = ECTS					7
*25 hour workload is accepted as 1 ECTS					

	-
Learning	Outcomes

Learn	Learning Outcomes				
1	Be able to express phase transitions				
2	Can be classify phase transitions				
3	Be able to express Spin-1/2 models				
4	To learn computer simulations				
5	To have information about the models used in defining statis	tical systems			

Programme Outcomes (Physics Doctorate)

1	
2	
3	
4	
5	
6	
7	
8	

Contribution of Learning Outcomes to Programme Outcomes 1:Very Low, 2:Low, 3:Medium, 4:High, 5:Very High

	L1	L2	L3	L4	L5
P1	5	5	5	5	5
P2	5	5	4	5	4
P3	5	5	5	5	4
P4	2	2	4	4	4
P5	2	2	4	4	3
P6	4	4	3	4	3
P7	3	5	5	5	4
P8	3	3	3	3	3

