

AYDIN ADNAN MENDERES UNIVERSITY COURSE INFORMATION FORM

Course Title Quantum Chemistry of Solid		L						
Course Code	FZK610		Couse Level		Third Cycle (Doctorate Degree)			
ECTS Credit 7	Workload	170 <i>(Hours)</i>	Theory	3	Practice	0	Laboratory	0
Objectives of the Course The lecture deals with the basic			asic concep	ts of the the	eory and calcul	ations of ele	ectronic structure o	f solids.
Course Content	Crystal structu Principles of n and interfaces	nethods for ele	nd continuo ectronic stru	us groups, l cture calcul	Basic concepts lations, Electro	of quantum	n physics and chen e calculations for si	nistry, urfaces
Work Placement N/A								
Planned Learning Activities and Teaching Methods		Explanatio	n (Presenta	tion), Discussio	on, Individua	al Study, Problem S	Solving	
Name of Lecturer(s)								

Assessment Methods and Criteria

Method	Quantity	Percentage (%)
Midterm Examination	1	20
Final Examination	1	30
Quiz	2	8
Attending Lectures	14	28
Assignment	14	14

Recommended or Required Reading

1	Introduction to the quantum chemistry of solids, C. M. Quinn
2	Physical Chemistry, P. Atkins and J. De Paul
3	The physics and chemistry of solids, S. Elliott, S. R. Elliott

Week	Weekly Detailed Cour	ekly Detailed Course Contents				
1	Theoretical	Basic concepts of quantum physics and chemistry				
2	Theoretical	Symmetry of Periodic Solids				
3	Theoretical	LCAO Hartree-Fock and Density Functional Methods				
4	Theoretical	Space groups and crystal structure				
5	Theoretical	Irreducible representations of space groups				
6	Theoretical	Representations of point and space groups				
7	Theoretical	Use of the space symmetry groups in LCAO methods				
8	Intermediate Exam	Midterm				
9	Theoretical	Hartree-Fock-Roothaan LCAO method for periodic solid				
10	Theoretical	DFT LCAO methods for periodic solids				
11	Theoretical	Band structure, optical properties and density of states in bulk crystals				
12	Theoretical	Crystal structure optimization in LCAO method				
13	Theoretical	Chemical bonding in periodic solids				
14	Theoretical	Point defects in ionic solids				
15	Theoretical	The electronic properties of Graphene and Silicene				
16	Final Exam	Final Exam				

Workload Calculation

Activity	Quantity	Preparation	Duration	Total Workload
Lecture - Theory	14	2	3	70
Assignment	12	4	1	60
Midterm Examination	1	10	2	12

				Course Information Form
Final Examination	1	25	3	28
		Тс	otal Workload (Hours)	170
		[Total Workload (Hours) / 25*] = ECTS	7
*25 hour workload is accepted as 1 ECTS				

Learn	ing Outcomes
1	After completion of the course student will be able to understand the connections between the electronic structure and technologically important properties of solids
2	To perform electronic calculations for simpler systems structure
3	To use the results of such calculations to analyze the connection between structure and properties of solids (structure-property relations).
4	To be able to calculate the ground states of simple lattices by using strong bound approximation.
5	To be able to explain how the chemical bounds occur and the causes of variations.
6	To be able to write the ground state configurations of elements by using the Hund rule.

Programme Outcomes (Physics Doctorate)

1	
2	
3	
4	
5	
6	
7	
8	

Contribution of Learning Outcomes to Programme Outcomes 1:Very Low, 2:Low, 3:Medium, 4:High, 5:Very High

	L1	L2	L3	L4	L5	L6
P1	4	3	5	4	5	4
P2	5	4	4	3	4	5
P3	4	3	4	4	5	4
P4	3	4	4	4	3	3
P5	3	5	3	3	4	4
P6	4	4	4	4	3	3
P7	2	3	3	3	4	3
P8	3	4	4	3	4	3