

AYDIN ADNAN MENDERES UNIVERSITY COURSE INFORMATION FORM

Course Title		Luminescence Spectroscopy I								
Course Code		FZK613		Couse Level		Third Cycle (Doctorate Degree)				
ECTS Credit	6	Workload	174 (Hours)	Theory	/	3	Practice	0	Laboratory	0
Objectives of the Course		To get information about the fundamental principles of luminescence and luminescence spectroscopy.								
Course Content		Fundamentals of luminescence. Spectroscopic techniques. Luminescent minerals. Luminescence centers. Application of spectroscopic techniques.								
Work Placeme	ent									
Planned Learning Activities and Teaching Methods			Explan	nation	(Presentat	ion), Experi	ment, Individual	l Study, Problem	Solving	
Name of Lectu	ırer(s)									

Assessment Methods and Criteria

Method	Quantity	Percentage (%)	
Midterm Examination	1	40	
Final Examination	1	40	
Assignment	7	20	

Recommended or Required Reading

1	Modern Luminescence Spectroscopy of Minerals and Materials. Michael Gaft, Renata Reisfeld, Gérard Panczer
2	Handbook of luminescent semiconductor materials. Leah Bergman, Jeanne L. McHale
3	Handbook ofApplied Solid State Spectroscopy. D. R. Vij

Week	Weekly Detailed Course Contents					
1	Theoretical	Theoretical Background I				
2	Theoretical	Theoretical Background II				
3	Theoretical	Theoretical Background III				
4	Theoretical	Experimental Techniques I				
5	Theoretical	Experimental Techniques II				
6	Theoretical	Experimental Techniques III				
7	Theoretical	Luminescent Minerals I				
8	Intermediate Exam	Midterm Exam				
9	Theoretical	Luminescent Minerals II				
10	Theoretical	Luminescent Minerals III				
11	Theoretical	Luminescence Centers I				
12	Theoretical	Luminescence Centers II				
13	Theoretical	Luminescence Centers III				
14	Theoretical	Applications of Laser-Induced Time-Resolved Spectroscopic Techniques				
15	Theoretical	Review and preparation to final exam				
16	Final Exam	Final Exam				

Workload Calculation

Activity	Quantity	Preparation	Duration	Total Workload	
Lecture - Theory	14	3	3	84	
Assignment	7	5	3	56	
Midterm Examination	1	12	5	17	
Final Examination	1	12	5	17	
Total Workload (Hours)					
[Total Workload (Hours) / 25*] = ECTS					
*25 hour workload is accepted as 1 FCTS					

*25 hour workload is accepted as 1 ECTS

Learning Outcomes						
1	Students can understand the luminescence phenomenon.					
2	Students can express the luminescence spectroscopic techniques.					
3	Students can explain the luminescence centers.					
4	Students can tell the application areas of luminescence spectroscopy.					
5	Students can relate the luminescence and the other branches of physics					

Programme Outcomes (Physics Doctorate)

1	
2	
3	
4	
5	
6	
7	
8	

Contribution of Learning Outcomes to Programme Outcomes 1:Very Low, 2:Low, 3:Medium, 4:High, 5:Very High

	L1	L2	L3	L4	L5		
P1	4	4	5	4	4		
P2	3	4	5	4	5		
P3	4	4	4	3	4		
P4	4	3	3	3	3		
P5	3	3	3	2	4		
P6	2	3	3	2	3		
P7	4	2	3	3	4		
P8	4	3	2	4	3		

