

AYDIN ADNAN MENDERES UNIVERSITY COURSE INFORMATION FORM

Course Title Lun		Luminescence Spectroscopy II								
Course Code		FZK614		Couse Level			Third Cycle (Doctorate Degree)			
ECTS Credit	6	Workload	174 (Hours)	Theory	,	3	Practice	0	Laboratory	0
Objectives of the Course		To get information about the techniques of luminescence spectroscopy and applications.								
Course Content		Fundamentals of luminescence spectroscopy. Localized and delocalized systems. The fundamentals of photoluminescence and applications. The fundamentals of thermoluminescence and applications.								
Work Placement										
Planned Learning Activities and Teaching Methods			Explan	ation (I	Presentati	ion), Experime	ent, Individua	l Study, Problem	Solving	
Name of Lecturer(s)										

Assessment Methods and Criteria						
Method	Quantity	Percentage (%)				
Midterm Examination	1	40				
Final Examination	1	40				
Assignment	7	20				

Recommended or Required Reading				
1	Modern Luminescence Spectroscopy of Minerals and Materials. Michael Gaft, Renata Reisfeld, Gérard Panczer			
2	Handbook of luminescent semiconductor materials. Leah Bergman, Jeanne L. McHale			
3	Handbook ofApplied Solid State Spectroscopy. D. R. Vij			
4	Thermoluminescence of solids. S.W.S McKeever.			

Week	Weekly Detailed Course Contents					
1	Theoretical	Introduction to Luminescence Spectroscopy				
2	Theoretical	Spontaneous Emission, Absorption, and Induced Emission				
3	Theoretical	Measurements and Techniques				
4	Theoretical	Localized Systems				
5	Theoretical	Processes in Localized System Service				
6	Theoretical	Delocalized Systems				
7	Theoretical	Processes in Delocalized Systems				
8	Intermediate Exam	Midterm				
9	Theoretical	Principles of Photoluminescence I				
10	Theoretical	Principles of Photoluminescence II				
11	Theoretical	Photoluminescence applications I				
12	Theoretical	Photoluminescence applications II				
13	Theoretical	Principles of Thermoluminescence				
14	Theoretical	Thermoluminescence applications I				
15	Theoretical	Thermoluminescence applications II				
16	Final Exam	Final Exam				

Workload Calculation					
Activity	Quantity	Preparation	Duration	Total Workload	
Lecture - Theory	14	3	3	84	
Assignment	7	5	3	56	
Midterm Examination	m Examination 1 12		5	17	
Final Examination	1	12	5	17	
	174				
	7				
*25 hour workload is accepted as 1 ECTS					

Learning Outcomes					
1	Students can realize the fundamentals of luminescence spectroscopy.				
2	Students can express localized and delocalized systems.				
3	Students can explain the photoluminescence and applications.				
4	Students can explain the thermoluminescence and applications.				
5	Students can relate luminescence and the other branches of physics.				

Progra	amme Outcomes (Physics Doctorate)	
1		
2		
3		
4		
5		
6		
7		
8		

Contribution of Learning Outcomes to Programme Outcomes 1:Very Low, 2:Low, 3:Medium, 4:High, 5:Very High

	L1	L2	L3	L4	L5
P1	5	4	5	4	5
P2	4	4	4	5	5
P3	4	3	4	3 (4
P4	3	4	3	3	4
P5	4	3	3	4	3
P6	3	4	4	3	3
P7	2	2	3	2	3
P8	3	3	4	3	3

