

## AYDIN ADNAN MENDERES UNIVERSITY COURSE INFORMATION FORM

| Course Title                                                                                          | Ellipsometry |                    |                 |                  |                  |                                |                     |         |
|-------------------------------------------------------------------------------------------------------|--------------|--------------------|-----------------|------------------|------------------|--------------------------------|---------------------|---------|
| Course Code                                                                                           | FZK617 Co    |                    | Couse Level 1   |                  | Third Cycle (I   | Third Cycle (Doctorate Degree) |                     |         |
| ECTS Credit 7                                                                                         | Workload     | 178 <i>(Hours)</i> | Theory          | 3                | Practice         | 0                              | Laboratory          | 0       |
| Objectives of the Course Provide an understanding of t light                                          |              |                    | f the basi      | ic principles o  | f the ellipsomet | ry method a                    | nd polarization sta | ites of |
| Course Content To examine Jones matrix for optical systems and states or determine the optical proper |              | of polariza        | ation of light. |                  |                  |                                |                     |         |
| Work Placement                                                                                        |              |                    |                 |                  |                  |                                |                     |         |
| Planned Learning Activities and Teaching Methods                                                      |              | Explana            | tion (Presenta  | ation), Discussi | on, Individua    | al Study, Problem              | Solving             |         |
| Name of Lecturer(s)                                                                                   |              |                    |                 |                  |                  |                                |                     |         |

| Assessment Methods and Criteria |          |                |  |  |  |  |
|---------------------------------|----------|----------------|--|--|--|--|
| Method                          | Quantity | Percentage (%) |  |  |  |  |
| Midterm Examination             | 1        | 20             |  |  |  |  |
| Final Examination               | 1        | 30             |  |  |  |  |
| Practice                        | 7        | 7              |  |  |  |  |
| Quiz                            | 2        | 8              |  |  |  |  |
| Attending Lectures              | 14       | 28             |  |  |  |  |
| Assignment                      | 7        | 7              |  |  |  |  |

## **Recommended or Required Reading**

| 1 | Ellipsometry and Polarized Light. R.M.A. Azzam                              |  |
|---|-----------------------------------------------------------------------------|--|
| 2 | Polarized light and optical measurement. David Clarke, John Fraser Grainger |  |
| 3 | Field guide to polarization. Edward Collet                                  |  |
| 4 | Handbook of ellipsometry. Harland G. Tompkins, Eugene A Irene               |  |

| Week | Weekly Detailed Course Contents |                                                                                    |  |  |
|------|---------------------------------|------------------------------------------------------------------------------------|--|--|
| 1    | Theoretical                     | Concept of polarization                                                            |  |  |
| 2    | Theoretical                     | Polarization states of a monochromatic and white light                             |  |  |
| 3    | Theoretical                     | Uniform transverse plane waves of light                                            |  |  |
| 4    | Theoretical                     | Jones vector of uniform plane waves                                                |  |  |
| 5    | Theoretical                     | Jones vectors of polarization states                                               |  |  |
| 6    | Theoretical                     | Representation of polarization states of light by complex numbers. Poincare sphere |  |  |
| 7    | Theoretical                     | Polarized optical elements, Jones-matris formulations                              |  |  |
| 8    | Intermediate Exam               | Midterm Exam                                                                       |  |  |
| 9    | Theoretical                     | Jones matrices of basic optical devices                                            |  |  |
| 10   | Theoretical                     | Polarization dependent intensity transmittance of optical systems                  |  |  |
| 11   | Theoretical                     | Propagation of polarized light in anisotropic media                                |  |  |
| 12   | Theoretical                     | Technique of ellipsometric measurement                                             |  |  |
| 13   | Theoretical                     | Modeling and analysis of the ellipsometric measurements data                       |  |  |
| 14   | Theoretical                     | Technique of Null ellipsometry                                                     |  |  |
| 15   | Theoretical                     | Technique of Null ellpsometry                                                      |  |  |
| 16   | Final Exam                      | Final Exam                                                                         |  |  |

## Workload Calculation

| Activity         | Quantity | Preparation | Duration | Total Workload |  |
|------------------|----------|-------------|----------|----------------|--|
| Lecture - Theory | 14       | 4           | 3        | 98             |  |
| Assignment       | 12       | 2           | 2        | 48             |  |
| Quiz             | 4        | 1           | 1        | 8              |  |



|                                         |   |                   |                             | Course information i onn |
|-----------------------------------------|---|-------------------|-----------------------------|--------------------------|
| Midterm Examination                     | 1 | 7                 | 5                           | 12                       |
| Final Examination                       | 1 | 7                 | 5                           | 12                       |
| Total Workload (Hours)                  |   |                   | 178                         |                          |
|                                         |   | [Total Workload ( | Hours) / 25*] = <b>ECTS</b> | 7                        |
| *25 hour workload is accepted as 1 ECTS |   |                   |                             |                          |

| .earn | ing Outcomes                                                                                                           |
|-------|------------------------------------------------------------------------------------------------------------------------|
| 1     | To be able to describe the polarization states of light.                                                               |
| 2     | To be able to describe the any polarization state of a polarized wave of light propagation through the optical systems |
| 3     | To be able to use the technique of ellipsometry in determining the optical properties of thin films                    |
| 4     | To be able to understand the null ellipsometry technique and to be able to apply it                                    |
| 5     | To be able to construct the relation between the ellipsometry and the other branches of physics                        |

## Programme Outcomes (Physics Doctorate)

| 1 |  |
|---|--|
| 2 |  |
| 3 |  |
| 4 |  |
| 5 |  |
| 6 |  |
| 7 |  |
| 8 |  |

| <b>Contribution of Learning Outcomes to Programme Outcomes</b> | 1:Very Low, 2:Low, 3:Medium, 4:High, 5:Very High |
|----------------------------------------------------------------|--------------------------------------------------|
|----------------------------------------------------------------|--------------------------------------------------|

|    | L1 | L2 | L3 | L4 | L5 |  |
|----|----|----|----|----|----|--|
| P1 | 5  | 5  | 4  | 4  | 4  |  |
| P2 | 4  | 5  | 4  | 4  | 5  |  |
| P3 | 4  | 4  | 4  | 4  | 5  |  |
| P4 | 3  | 4  | 3  | 3  | 4  |  |
| P5 | 3  | 3  | 2  | 3  | 4  |  |
| P6 | 4  | 4  | 3  | 3  | 3  |  |
| P7 | 2  | 3  | 4  | 3  | 3  |  |
| P8 | 4  | 3  | 4  | 3  | 3  |  |

