

AYDIN ADNAN MENDERES UNIVERSITY COURSE INFORMATION FORM

Course Title Advanced Vacuum Physics								
Course Code	FZK618		Couse Level		Third Cycle (Doctorate Degree)			
ECTS Credit 7	Workload	178 (Hours)	Theory	3	Practice	0	Laboratory	0
Objectives of the Course To obtain inform		rmation on va	cuum syst	ems.				
Course Content Nature of vacuum and it systems. Vacuum gauge								
Work Placement N/A								
Planned Learning Activities and Teaching Methods Expla			Explanati	ion (Presentat	tion), Experim	ent		
Name of Lecturer(s)								

Assessment Methods and Criteria						
Method	Quantity	Percentage (%)				
Midterm Examination	1	20				
Final Examination	1	30				
Practice	7	7				
Quiz	2	8				
Attending Lectures	14	28				
Assignment	7	7				

Reco	Recommended or Required Reading				
1	Ultrahigh Vacuum and it's Applications. Richard W.Roberts, Thomas A. Vanderslice				
2	Vacuum Physics and Techniques. T.A. Delchar				
3	Vacuum Physics and Technology. G.L Weissler, R.W. Carlson				
4	Vacuum Techniques. Çelik Tarımcı, Hüseyin Sarı				

Week	Weekly Detailed Cour	se Contents			
1	Theoretical	The nature and the creation of the vacuum.			
2	Theoretical	The properties of gases, fluid flow and pumping concepts, vacuum systems			
3	Theoretical	The vacuum chamber design, unloading and gas pumping, pumping system design			
4	Theoretical	Ordinary vacuum pumps, diffusion pumps, molecular pumps			
5	Theoretical	Molecular drag pumps and tubomoleküler			
6	Theoretical	Molecular drag pumps and tubomoleküler			
7	Intermediate Exam	Midterm			
8	Theoretical	Cryogenic pumps, ultra high vacuum: gettering and ion pumping			
9	Theoretical	Cryogenic pumps, ultra high vacuum: gettering and ion pumping			
10	Theoretical	Sputter-ion pumps			
11	Theoretical	Sputter-ion pumps			
12	Theoretical	Vacuum gauges and gas analysis			
13	Theoretical	Vacuum gauges and gas analysis			
14	Theoretical	Measurements methods and elimination of gas leakage			
15	Final Exam	Final Exam			

Workload Calculation						
Activity	Quantity	Preparation	Duration	Total Workload		
Lecture - Theory	14	3	3	84		
Lecture - Practice	1	3	4	7		
Assignment	7	3	1	28		
Quiz	2	10	2	24		
Midterm Examination	1	10	2	12		

Final Examination	1		20	3	23	
Total Workload (Hours)				178		
[Total Workload (Hours) / 25*] = ECTS 7					7	
*25 hour workload is accepted as 1 ECTS						

Learn	ing Outcomes
1	He/She should know the properties of gases.
2	Be able to express the importance of vacuum media for the materials to be prepared.
3	He/She can say types of vacuum systems and vacuum pumps
4	He/She can say methods of analysis and the perception of leaks in gas leakage
5	To be able to generalize methods and apply them to new problems

Progra	Programme Outcomes (Physics Doctorate)							
1								
2								
3								
4								
5								
6								
7								
8								

Contribution of Learning Outcomes to Programme Outcomes 1:Very Low, 2:Low, 3:Medium, 4:High, 5:Very High

	L1	L2	L3	L4	L5
P1	5	3	1	1	2
P2	5	3	2	1	2
P3	4	2	1	2	3
P4	3	4	4	5	2
P5	3	4	4	5	3
P6	5	5	4	4	4
P7	5	3	3	5	4
P8	5	5	5	5	5

