

AYDIN ADNAN MENDERES UNIVERSITY COURSE INFORMATION FORM

Course Title Signal and Data Analysis Methods								
Course Code	FZK620		Couse Level		Third Cycle (Doctorate Degree)			
ECTS Credit 7	Workload	178 (Hours)	Theory	3	Practice	0	Laboratory	0
Objectives of the Course To analyze the accuracy o			of the data obtained from the experiment.					
	special probat mean and vari squares metho	bility distribution iance, error and od and the ap	ons, binomial nalysis and e plications, pro	, Poisson, rror analys obability te	and Gaussian is applications sts, finding a fi	distributions , the chi-squ it and applic	y spaces and distr s, random variable lare statistics, the ations, Monte-Car ysis applications in	s, the least lo (MC)
Work Placement								
Planned Learning Activities and Teaching Methods			Explanation	(Presenta	tion), Individua	l Study, Pro	blem Solving	
Name of Lecturer(s)								

Assessment Methods and Criteria							
Method	Quantity	Percentage (%)					
Midterm Examination	1	20					
Final Examination	1	30					
Practice	7	7					
Quiz	2	8					
Attending Lectures	14	28					
Assignment	7	7					

Recommended or Required Reading

1 An introduction to statistical methods and data analysis. R. Lymann Ott, Michael T. Longnecker

2 Sayısal Fizik. Bekir Karaoğlu

Week	Weekly Detailed Course Contents				
1	Theoretical	In physics the concept of error, precision and accuracy, probability			
2	Theoretical	Probability spaces and distributions, special probability distributions			
3	Theoretical	Binomial, Poisson and Gaussian distributions			
4	Theoretical	Random variables, the mean and variance			
5	Theoretical	Error analysis and error analysis applications			
6	Theoretical	Chi-square statistics			
7	Theoretical	And applications of the method of least squares			
8	Intermediate Exam	Midterm exam			
9	Theoretical	And applications of the method of least squares			
10	Theoretical	Probability tests, finding a fit and applications			
11	Theoretical	Monte-Carlo (MC) methods and techniques			
12	Theoretical	MC applications in physics			
13	Theoretical	Computer data analysis applications in physics			
14	Theoretical	Computer data analysis applications in physics			
15	Final Exam	Final Exam			

Workload Calculation						
Activity	Quantity	Preparation	Duration	Total Workload		
Lecture - Theory	14	4	3	98		
Assignment	12	2	2	48		
Quiz	4	1	1	8		
Midterm Examination	1	7	5	12		

Final Examination	1	7	5	12		
Total Workload (Hours)						
		[Total Workload (Hours) / 25*] = ECTS	7		
*25 hour workload is accepted as 1 ECTS						

Learning Outcomes

Lean	ng Outcomes	
1	To analyze the accuracy of the data obtained from the experiment.	
2	To analyze the error of experimental data	
3	Being able to analyze the data with the help of computer programs.	
4	To be able to apply them to new problems	
5	Learning data analysis	

Programme Outcomes (Physics Doctorate)

1	
2	
3	
4	
5	
6	
7	
8	

Contribution of Learning Outcomes to Programme Outcomes 1:Very Low, 2:Low, 3:Medium, 4:High, 5:Very High

	L1	L2	L3	L4	L5
P1	5	4	4	4	5
P2	4	4	3	4	4
P3	4	3	3	4	3
P4	3	4	4	3	3
P5	4	2	3	3	4
P6	2	2	3	4	4
P7	2	3	3	2	4
P8	3	4	3	3	3

