

#### AYDIN ADNAN MENDERES UNIVERSITY COURSE INFORMATION FORM

| Course Title Enzyme Kinetics                     |                |                                                      |                                                                         |                                         |                                                |                                                     |                                                 |                                                                                                     |                       |
|--------------------------------------------------|----------------|------------------------------------------------------|-------------------------------------------------------------------------|-----------------------------------------|------------------------------------------------|-----------------------------------------------------|-------------------------------------------------|-----------------------------------------------------------------------------------------------------|-----------------------|
| Course Code                                      |                | GMP520                                               |                                                                         | Couse Level                             |                                                | Second Cycle (Master's Degree)                      |                                                 |                                                                                                     |                       |
| ECTS Credit                                      | 8              | Workload                                             | 200 (Hours)                                                             | Theory                                  | 3                                              | Practice                                            | 0                                               | Laboratory                                                                                          | 0                     |
| Objectives of the Course                         |                | It is aimed to i                                     | It is aimed to investigate the enzymes catalyzed reactions kinetically. |                                         |                                                |                                                     |                                                 |                                                                                                     |                       |
| Course Content                                   |                | Equations of M<br>inhibition, com<br>activation, sig | Aichealis Men<br>petitive, nonc<br>moid kinetics                        | ten, Linev<br>competitive<br>and allost | veaver-Burk v<br>e-uncompetiti<br>eric enzymes | ve Eadie-Hofstove inhibitors, in<br>, immobilized e | ee, effects of<br>hibition of su<br>enzymes, me | c, Kinetics of enzy<br>temperature and<br>ubstrat and produ<br>thods and applica<br>mechanism of en | pH,<br>ct,<br>ations, |
| Work Placeme                                     | ent            | N/A                                                  |                                                                         |                                         |                                                |                                                     |                                                 |                                                                                                     |                       |
| Planned Learning Activities and Teaching Methods |                |                                                      | Evolopot                                                                | ion (Droconto                           |                                                | 0 0                                                 |                                                 |                                                                                                     |                       |
| Planned Learr                                    | ing Activities | and reaching                                         | Methods                                                                 | Problem                                 |                                                | ation), Discussi                                    | on, Case Stu                                    | ıdy, Individual Stu                                                                                 | ıdy,                  |

## Assessment Methods and Criteria

| Method              | Quantity | Percentage (%) |    |
|---------------------|----------|----------------|----|
| Midterm Examination |          | 1              | 40 |
| Final Examination   |          | 1              | 60 |

#### **Recommended or Required Reading**

| 1 | Kenneth B. Taylor, Enzyme Kinetics and Mechanisms (Electronic Resource), Kluwer Academic Pub., Boston, 2002          |
|---|----------------------------------------------------------------------------------------------------------------------|
| 2 | Bisswanger Hans (Translated by Leonic Bubenheim), Enzyme Kinetics - Principles and Methohs, John Wiley-VCH, NY, 2002 |

| Week | Weekly Detailed Cour | e Contents                                                                                                       |  |  |  |  |
|------|----------------------|------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| 1    | Theoretical          | Basic concepts, Structure of enzymes, bioenergetic                                                               |  |  |  |  |
| 2    | Theoretical          | Kinetics of enzyme;Single substrate, Equations of Michealis Menten, Lineweaver-Burk ve EadieHofstee              |  |  |  |  |
| 3    | Theoretical          | Inhibitors, Competitive, noncompetitive-uncompetitive inhibitors, Inhibition of substrat and product, activation |  |  |  |  |
| 4    | Theoretical          | Activation, effects of temperature and pH                                                                        |  |  |  |  |
| 5    | Theoretical          | Kinetics of enzyme; Two/multi substrate                                                                          |  |  |  |  |
| 6    | Theoretical          | İnhibition                                                                                                       |  |  |  |  |
| 7    | Intermediate Exam    | Midterm exam                                                                                                     |  |  |  |  |
| 8    | Theoretical          | Activation, effects of temperature and pH                                                                        |  |  |  |  |
| 9    | Theoretical          | Sigmoid kinetics                                                                                                 |  |  |  |  |
| 10   | Theoretical          | immobilized enzymes                                                                                              |  |  |  |  |
| 11   | Theoretical          | The effect of immobilization on kinetic parameters                                                               |  |  |  |  |
| 12   | Theoretical          | Experimental measurement of enzyme activity, initial velocity measurements, analysis methods                     |  |  |  |  |
| 13   | Theoretical          | Enzymes in Food Applications                                                                                     |  |  |  |  |
| 14   | Theoretical          | Seminar                                                                                                          |  |  |  |  |

#### **Workload Calculation**

| Activity                                | Quantity | Preparation |    | Duration | Total Workload |
|-----------------------------------------|----------|-------------|----|----------|----------------|
| Lecture - Theory                        | 14       |             | 9  | 3        | 168            |
| Midterm Examination                     | 1        |             | 15 | 1        | 16             |
| Final Examination                       | 1        |             | 15 | 1        | 16             |
| Total Workload (Hours)                  |          |             |    |          |                |
| [Total Workload (Hours) / 25*] = ECTS   |          |             |    |          | 8              |
| *25 hour workload is accepted as 1 ECTS |          |             |    |          |                |



| Learni | ing Outcomes |  |
|--------|--------------|--|
| 1      |              |  |
| 2      |              |  |
| 3      |              |  |
| 4      |              |  |
| 5      |              |  |
| 6      |              |  |

# Programme Outcomes (Food Engineering Master)

| 1 | To provide further training and research opportunities to food engineers to meet the needs of the food industry                                                                                        |
|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2 | To develop and deepen the current and advanced knowledge in the field of food engineering with original thought and / or research at the level of expertise, based on the qualifications of the master |
| 3 | To identify, define, formulate and solve problems in applications related to Food Engineering and gain the ability to select and apply appropriate analytical methods and modeling techniques          |
| 4 | To gain the ability to evaluate the accuracy of the data obtained from food analysis                                                                                                                   |
| 5 | To educate students having research, entrepreneur qualifications                                                                                                                                       |

### Contribution of Learning Outcomes to Programme Outcomes 1:Very Low, 2:Low, 3:Medium, 4:High, 5:Very High

|    | L1 | L2 | L3 | L4 | L5 | L6 |   |
|----|----|----|----|----|----|----|---|
| P1 | 5  | 5  | 5  | 5  | 5  | 5  |   |
| P2 | 5  | 5  | 5  | 5  | 5  | 5  |   |
| P3 | 1  | 1  | 1  | 1  | 1  | 1  |   |
| P4 | 1  |    |    |    |    |    |   |
| P5 | 4  | 4  | 4  | 4  | 4  | 4  | ] |



Course Information Form