

AYDIN ADNAN MENDERES UNIVERSITY COURSE INFORMATION FORM

Course Title Adva		Advance Heat	Transfer							
Course Code		GMP528		Couse	Level	el Second Cycle (Master's Degree)		egree)		
ECTS Credit	8	Workload	200 (Hours)	Theory		3	Practice	0	Laboratory	0
Objectives of the	Objectives of the Course The objective of the course is to provide students learn to derive the general energy equation in differ geometry and the unsteady state heat conduction equation in one direction and multi-dimensional systems; to learn analytical solution methods and Laplace transformation method of this equation; to applications of unsteady state heat transfer in the food industry and knowledge and calculation method about freezing, thawing, pasteurization and sterilization.					onal on; to give				
Course Content		generation Un	steady state l reezing and t	heat con	duction in	solid	s. Analytical s	olutions for in	tion with internal I nfinite slab, infinite ization Applicatio	e cylinder
Work Placement	t	N/A								
Planned Learnin	g Activities	and Teaching I	Vethods		ation (Pres n Solving	senta	tion), Discuss	ion, Case Stu	udy, Individual Stu	udy,
Name of Lecture	er(s)									

Assessment Methods and Criteria

Method	Quantity	Percentage (%)	
Midterm Examination		1	30
Final Examination		1	45
Assignment		7	10
Term Assignment		1	15

Recommended or Required Reading

1	Bird R.B., Stewart W.E., Lightfoot E.N., 1960. "Transport Phenomena". John Wiley & Sons, Inc.
2	Charm S.E., 1978. "The Fundementals of Food Engineering". 3rd Ed. AVI Publishing Company, Inc
3	Özilgen, M.1998. "Food Process Modeling and Control. Chemical Engineering Applications" Gordon and Breach Science Publishers
4	Tosun, İ.2002. "Modelling in Transport Phenomena. A Conceptual Approach" Elsevier Science B.V.

Week	Weekly Detailed Cours	se Contents
1	Theoretical	The energy equation in curvilinear coordinates
2	Theoretical	The equations of motion for forced and free convection in nonisothermal flow. Special cases of the equation of energy change. Uses of equation of energy change. Heat conduction with internal heat generation
3	Theoretical	Unsteady state heat conduction in solids. Analytical solution methods for the equation: combination of variables
4	Theoretical	Unsteady state heat conduction in solids. Analytical solution methods for the equation: separation of variables
5	Theoretical	Unsteady state heat conduction in solids. Analytical solution methods for the equation: Laplace transformation
6	Theoretical	Unsteady state heat conduction in one direction, Analytical solutions for infinite slab, infinite cylinder and sphere, Average values
7	Theoretical	Unsteady state heat conduction in two and three dimensional systems, Unsteady state heat conduction in irregular solids
8	Intermediate Exam	Midterm
9	Theoretical	Freezing and thawing of food materials. Prediction of freezing times of foods. Plank equation
10	Theoretical	Plank equation and modifications, Prediction of freezing times for regular multi-dimensional shapes
11	Theoretical	Prediction of freezing times for irregular shapes
12	Theoretical	Pasteurization and Sterilization Applications. Commerciall Sterility. Sterilization under variant temperature
13	Theoretical	Calculation procedure for sterilizaton at conductive and convective heating conditions. Ball and Olson Method

14 Fir	nal Exam	Final Exam
--------	----------	------------

Workload Calculation

Activity	Quantity	Preparation	Duration	Total Workload
Lecture - Theory	14	6	3	126
Assignment	7	3	0	21
Term Project	1	10	3	13
Midterm Examination	1	17	3	20
Final Examination	1	17	3	20
		То	tal Workload (Hours)	200
		[Total Workload (I	Hours) / 25*] = ECTS	8

*25 hour workload is accepted as 1 ECTS

Learning Outcomes

	5	
1		
2		
3		
4		
5		
6		
7		

Programme Outcomes (Food Engineering Master)

1	To provide further training and research opportunities to food engineers to meet the needs of the food industry
2	To develop and deepen the current and advanced knowledge in the field of food engineering with original thought and / or research at the level of expertise, based on the qualifications of the master
3	To identify, define, formulate and solve problems in applications related to Food Engineering and gain the ability to select and apply appropriate analytical methods and modeling techniques
4	To gain the ability to evaluate the accuracy of the data obtained from food analysis
5	To educate students having research, entrepreneur qualifications

Contribution of Learning Outcomes to Programme Outcomes 1: Very Low, 2: Low, 3: Medium, 4: High, 5: Very High

	L1	L2	L3	L4	L5	L6	L7
P1	5			3			
P2	5		3				
P3	5	4	5	5	3	5	5
P4	1						
P5					4		

