

AYDIN ADNAN MENDERES UNIVERSITY COURSE INFORMATION FORM

Course Title Rheological Properties of F			ods					
Course Code	GMP529		Couse Level S		Second Cycle (Master's Degree)			
ECTS Credit 8	Workload 2	200 (Hours)	Theory	3	Practice	0	Laboratory	0
Objectives of the Course	The main aim of techniques, to in	f this course form about	was to expl the importa	ain the rheance of these	ological proper e properties on	ties of foods a momentum a	nd measuremen nd heat transfer	it
Course Content	Classification of techniques. The Dimensional and profiles and pres momentum and change of rheolo	rheological importance alysis in mor ssure losses heat transfe ogical prope	properties of of rheologic nentum and for Newton r analysis o rties during	f foods; Ne cal propertie heat transi ian and Noi f liquid fooc nonthermal	wtonian and N es in momentu fer for NonNew nNewtonian fo Is in heat exch processes as	onNewtonian m and heat tra vtonian foods. od in flow syst angers and ag example syste	foods. Measurer ansfer for foods. The prediction c tems. The detaile gitated vessel, ar ems	nent of velocity ad nd the
Work Placement N/A								
Planned Learning Activities and Teaching M		ethods	Explanation Study	n (Presenta	tion), Experime	ent, Discussio	n, Case Study, Ir	ndividual
Name of Lecturer(s)								

Assessment Methods and Criteria

Midterm Examination130Final Examination150Assignment120	Method	Quantity	Percentage (%)
Final Examination150Assignment120	Midterm Examination	1	30
Assignment 1 20	Final Examination	1	50
•	Assignment	1	20

Recommended or Required Reading

1 Steffe, J.F.S., 1996. "Rheological Methods in Food Process Engineering"

2 Heldman, D.R., Lund, D.B., Sabliov, C., 2007. "Handbook of Food Engineering"

Week	Weekly Detailed Course Contents					
1	Theoretical	Classification of rheological properties of foods; Newtonian and NonNewtonian foods, viscoelastic and elastic foods				
2	Theoretical	Newtonian and NonNewtonian foods, viscoelastic and elastic foods-continue				
3	Theoretical	Effects of structure and composition on rheological properties of foods				
4	Theoretical	Measurement methods of rheological properties				
5	Theoretical	Importance of rheological properties on momentum and heat transfer				
6	Theoretical	Dimensionless analysis in momentum and heat transfer				
7	Theoretical	Determination of velocity profiles and pressure drop relations in piping systems for fluid foods having different rheological properties				
8	Intermediate Exam	Midterm				
9	Theoretical	Case study-1; momentum and heat transfer analyses in heat exhangers				
10	Theoretical	Case study-2; momentum and heat transfer analyses in agitated vessel				
11	Theoretical	Change of rheological properties by nonthermal processes				
12	Theoretical	Principles of measurement instruments for rheological properties; Texture analysis in solid food (Practice)				
13	Theoretical	Principles of measurement instruments for rheological properties; Viscosity measurment in fluids (Practice)				
14	Final Exam	Final Exam				

Workload Calculation

Activity	Quantity	Preparation	Duration	Total Workload	
Lecture - Theory	14	8	3	154	
Assignment	1	10	2	12	
Midterm Examination	1	15	2	17	

Final Examination	1		15	2	17	
Total Workload (Hours)					200	
[Total Workload (Hours) / 25*] = ECTS 8						
*25 hour workload is accepted as 1 ECTS						

Learn	ing Outcomes	
1		
2		
3		
4		
5		
6		
7		

Programme Outcomes (Food Engineering Master)

•	
1	To provide further training and research opportunities to food engineers to meet the needs of the food industry
2	To develop and deepen the current and advanced knowledge in the field of food engineering with original thought and / or research at the level of expertise, based on the qualifications of the master
3	To identify, define, formulate and solve problems in applications related to Food Engineering and gain the ability to select and apply appropriate analytical methods and modeling techniques
4	To gain the ability to evaluate the accuracy of the data obtained from food analysis
5	To educate students having research, entrepreneur qualifications

Contribution of Learning Outcomes to Programme Outcomes 1: Very Low, 2: Low, 3: Medium, 4: High, 5: Very High

	L1	L2	L3	L4	L5	L6	L7
P1					5	5	5
P2				5	5	5	5
P3	5	5	5	5	5	5	
P4	1						
P5						5	

