

AYDIN ADNAN MENDERES UNIVERSITY COURSE INFORMATION FORM

Course Title		Analytical Met	thods in Engin	eering					
Course Code		MCE501		Couse Lev	el	Second Cycle	e (Master's D)egree)	
ECTS Credit	7	Workload	175 <i>(Hours)</i>	Theory	3	Practice	0	Laboratory	0
Objectives of the Co	ourse	analytical solu	ition methods	for linear or	dinary and p	lents to unders partial different re functions ar	tial equations	s. This course will polynomials.	enable
Course Content			. Boundary co	nditions. Pa	rtial differer	tial equations.		ons. Method of Fro of variables. Bess	
Work Placement		N/A							
Planned Learning A	Activities	and Teaching	Methods	Explanation	n (Presenta	tion), Case Stu	udy, Individu	al Study, Problem	n Solving
Name of Lecturer(s)	Prof. Selman	SAĞLAM						

Assessment Methods and Criteria

Method	Quantity	Percentage (%)
Midterm Examination	2	40
Final Examination	1	40
Assignment	4	20

Recommended or Required Reading

1	P.V. O'Neil, Advanced Engineering Mathematics, 7. Ed., Cengage Learning, 2010.
2	F.B. Hildebrand, Advanced Calculus for Applications, 2. Ed., Prentice-Hall, 1976
3	C.R. Wylie, Diffrential Equations, McGraw-Hill, 1979

Week	Weekly Detailed Cours	se Contents
1	Theoretical	Elementary Methods for solution of ordinary differential equations
2	Theoretical	Elementary Methods for solution of ordinary differential equations
3	Theoretical	Series solutions of ordinary differential equations
4	Theoretical	Series solutions of ordinary differential equations
5	Theoretical	Method of Frobenius
6	Theoretical	Fourier Series
7	Theoretical	Boundary Conditions
8	Intermediate Exam	Midterm Exam
9	Theoretical	Partial Differential Equations
10	Theoretical	Partial Differential Equations
11	Theoretical	Seperation of variables
12	Theoretical	Seperation of variables
13	Theoretical	Seperation of variables
14	Theoretical	Special functions
15	Theoretical	Special functions
16	Final Exam	Final Exam

Workload Calculation

Activity	Quantity	Preparation	Duration	Total Workload
Lecture - Theory	14	2	3	70
Assignment	4	0	4	16
Midterm Examination	2	25	3	56

	no o li o io	[a 1100
		FOIII

Final Examination	1	30	3	33
		To	tal Workload (Hours)	175
		[Total Workload (Hours) / 25*] = ECTS	7
*25 hour workload is accepted as 1 ECTS				

Learn	arning Outcomes	
1	1 be able to find analytical solutions of linear ordinary differential equations	IS
2	2 be able to find analytical solutions of partial differential equations	
3	3 be familiar with Fourier series	
4	4 be able to solve Bessel, Gamma,Laguerre functions	
5	5 be familiar wiht Legendre polynomials	

Programme Outcomes (Food Engineering Master)

1	To provide further training and research opportunities to food engineers to meet the needs of the food industry
2	To develop and deepen the current and advanced knowledge in the field of food engineering with original thought and / or research at the level of expertise, based on the qualifications of the master
3	To identify, define, formulate and solve problems in applications related to Food Engineering and gain the ability to select and apply appropriate analytical methods and modeling techniques
4	To gain the ability to evaluate the accuracy of the data obtained from food analysis
5	To educate students having research, entrepreneur qualifications

3

Contribution of Learning Outcomes to Programme Outcomes 1: Very Low, 2: Low, 3: Medium, 4: High, 5: Very High

	L1	L2	L3	L4	L5
P1	4	4	4	4	4
P2	4	4	4	4	4
P3	5	5	5	5	5
P4	5	5	5	5	5

3

3

3

P5

3