

AYDIN ADNAN MENDERES UNIVERSITY COURSE INFORMATION FORM

Course Title	Developmental Biology and Molecular Embryology							
Course Code	KHÜ521 Couse Level Second Cycle (Master's Degree)							
ECTS Credit 6	Workload	145 (Hours)) Theory 2		Practice	0	Laboratory	0
Objectives of the Course To explain the molecular and cellular approaches in embryo and its development with the help of new technologies.						of new		
Course Content	lopment of org	gans, d gene trackii				n and movement	of cells in	
Work Placement N/A								
Planned Learning Activities and Teaching Methods		Methods	Explanation	(Presenta	tion), Demonst	ration, Disc	ussion, Individual	Study
Name of Lecturer(s)								

Assessment Methods and Criteria						
Method	Quantity	Percentage (%)				
Midterm Examination	1	20				
Final Examination	1	60				
Assignment	1	20				

Recor	Recommended or Required Reading						
1	R. Lanza, J. Gearhart, B. Hogan, D. Melton, R. Pederson, E.D. Thomas, J.Thomson, I. Wilmut. Essentials of Stem Cell Biology. Academic Press						
2	Lewandowski M, Mouse Molecular Embryology, Methods and Protocols, Humana Press, 2014.						
3	Sharpe P, Mason I, Mouse Molecular Embryology, Methods and Protocols, Humana Press, 2008.						
4	Kubiak JZ, Mouse development, from oocyte to stem cell, Humana Press, 2012						

Week	Weekly Detailed Cours	se Contents				
1	Theoretical	Fertilization and embryo				
2	Theoretical	Development hierarchy in embryo and cell fate				
3	Theoretical	Development of germ layers				
4	Theoretical	Neural crest cells and their importance in development				
5	Theoretical	pithelial mesenchymal transition event				
6	Theoretical	Development of organs and artificial organs				
7	Theoretical	Assistive reproductive technologies				
8	Intermediate Exam	Mid-term exam				
9	Theoretical	Animal models used in developmental biology studies				
10	Theoretical	Transgenic embryo technology				
11	Theoretical	Genome regulation technologies in embryo				
12	Theoretical	Embryo and organ culture technologies				
13	Theoretical	In situ hybridization				
14	Theoretical	Cell sorting technologies				

Workload Calculation						
Activity	Quantity	Preparation	Duration	Total Workload		
Lecture - Theory	13	1	2	39		
Assignment	2	14	1	30		
Midterm Examination	1	24	2	26		

Final Examination	1		48	2	50
Total Workload (Hours)				145	
			[Total Workload (Hours) / 25*] = ECTS	6
*25 hour workload is accepted as 1 ECTS					

Learn	ning Outcomes
1	Learn the importance of stem cells in embryo development.
2	Understand the movements of the cells in the embryo and the stages of organ development.
3	Examine embryo culture and animal models.
4	Gains knowledge of new molecular and imaging technologies.
5	Have knowledge about transgenic embryo technology

Progr	Programme Outcomes (Stem Cell and Regenerative Medicine Interdisciplinary Master)					
1	To have comprehensive and in-depth knowledge of Stem Cell and Regenerative Medicine					
2	To have information about stem cell production and characterization					
3	To learn stem cell sources, stem cell types and their differences					
4	To understand the molecular and genetic structure of stem cells					
5	To be able to learn and make stem cell culture methods					
6	To be able to adapt the knowledge in the field of stem cells to research in line with current developments					
7	To be able to use molecular laboratory methods used in stem cell research					
8	Learning in vitro disease models and in vivo experiments related to stem cells					
9	To have knowledge about stem cell therapies and clinical use					
10	Conduct independent research in accordance with the principles of research and publication ethics					

Contribution of Learning Outcomes to Programme Outcomes 1:Very Low, 2:Low, 3:Medium, 4:High, 5:Very High L1 L2 L3 L4 L5

	L1	L2	L3	L4	L5
P1	3	3	3	4	3
P4	3	3			3
P5			3	3	
P6	3	3	3	4	3
P7			3	3	
P8	3	3	4	3	3

