

AYDIN ADNAN MENDERES UNIVERSITY COURSE INFORMATION FORM

Course Title	Analytical Met	hods in Engin	eering					
Course Code	MCE501 Couse Level Second Cycle (Master's Degree)							
ECTS Credit 7	Workload	175 (Hours)	Theory	3	Practice	0	Laboratory	0
Objectives of the Course The objectives of this course are to enable the students to understand analytical solution methods for linear ordinary and partial differential equations. This course will enable graduate students to solve Bessel, Gamma, Laguerre functions and Legendre polynomials.								
Course Content Ordinary differential equations. Series solutions of ordinary differential equations. Method of Frobenius. Fourier series. Boundary conditions. Partial differential equations. Seperation of variables. Bessel, Gamma, Laguerre functions. Legendre polynomials.								
Work Placement	N/A							
Planned Learning Activities and Teaching Methods			Explanation	(Presenta	tion), Case Stu	udy, Individu	al Study, Problem	Solving
Name of Lecturer(s)	Name of Lecturer(s) Prof. Selman SAĞLAM							

Assessment Methods and Criteria						
Method	Quantity	Percentage (%)				
Midterm Examination	2	40				
Final Examination	1	40				
Assignment	4	20				

Recommended or Required Reading					
1	P.V. O'Neil, Advanced Engineering Mathematics, 7. Ed., Cengage Learning, 2010.				
2	F.B. Hildebrand, Advanced Calculus for Applications, 2. Ed., Prentice-Hall, 1976				
3	C.R. Wylie, Diffrential Equations, McGraw-Hill, 1979				

Week	Weekly Detailed Course Contents					
1	Theoretical	lementary Methods for solution of ordinary differential equations				
2	Theoretical	Elementary Methods for solution of ordinary differential equations				
3	Theoretical	Series solutions of ordinary differential equations				
4	Theoretical	Series solutions of ordinary differential equations				
5	Theoretical	Method of Frobenius				
6	Theoretical	Fourier Series				
7	Theoretical	Boundary Conditions				
8	Intermediate Exam	Midterm Exam				
9	Theoretical	Partial Differential Equations				
10	Theoretical	Partial Differential Equations				
11	Theoretical	Seperation of variables				
12	Theoretical	Seperation of variables				
13	Theoretical	Seperation of variables				
14	Theoretical	Special functions				
15	Theoretical	Special functions				
16	Final Exam	Final Exam				

Workload Calculation				
Activity	Quantity	Preparation	Duration	Total Workload
Lecture - Theory	14	2	3	70
Assignment	4	0	4	16
Midterm Examination	2	25	3	56

Final Examination	1		30	3	33	
Total Workload (Hours) 175					175	
[Total Workload (Hours) / 25*] = ECTS 7						
*25 hour workload is accepted as 1 ECTS						

Learn	Learning Outcomes							
1	be able to find analytical solutions of linear ordinary differential equations							
2	be able to find analytical solutions of partial differential equations							
3	be familiar with Fourier series							
4	be able to solve Bessel, Gamma, Laguerre functions							
5	be familiar wiht Legendre polynomials							

Progr	amme Outcomes (Civil Engineering (English) Master)
1	To be able to develop expertise knowledge in a civil engineering area founded on their graduate competence.
2	To be able to use the theoretical and practical expertise knowledge gained in their specialty area.
3	To be able to use the information, problem solving and / or practical skills from the field, in interdisciplinary studies.
4	To be able to create new knowledge by integrating their knowledge area with the knowledge coming from different disciplines; and solve problems that need expertise by using scientific research methods
5	To be able to solve the problems related to his/her area by using appropriate research methods
6	To be able to devise a problem in their specialty area, develop a solution methodology, solve the problem, and interpret the results and take action if necessary
7	To be able to criticize the knowledge in their specialty area, guide the learning process, and independently direct high level studies
8	To be able to systematically communicate the recent developments in their specialty area and their own studies to groups both inside and outside their specialty area, orally, in writing and visually
9	To be able to use computer software at a level required by their specialty area with drawing upon information and communication technology at a high level
10	To be able to introduce scientific, technological, social and cultural advancements in the field of civil engineering and to contribute to the process of being an information of the society and to sustain it.
11	To be conscious of professional and ethical responsibility and contribute to the establishment of this consciousness.
12	To be able to protect social, scientific, and ethical values during collection, interpretation, and dissemination stages of the data associated with their specialty area; instruct and supervise these values
13	To be able to use at least one foreign language in a level to follow current developments related to the field.

Contribution of Learning Outcomes to Programme Outcomes 1:Very Low, 2:Low, 3:Medium, 4:High, 5:Very High

	L1	L2	L3	L4	L5
P1	5	4	5	4	5
P2	4	5	4	5	4
P3	5	4	4	4	5
P4	4	5	5	5	4
P5	5	4	4	4	5
P6	4	5	5	5	4
P7	5	4	4	4	5
P8	4	5	5	5	4
P9	5	4	4	4	5
P10	4	5	5	5	4
P11	5	4	4	4	5
P12	4	5	5	5	4
P13	5	4	4	4	5

