

AYDIN ADNAN MENDERES UNIVERSITY COURSE INFORMATION FORM

Course Title		Machine Lear	ning For Engi	neers					
Course Code		MCE503		Couse Level		Second Cycle (Master's Degree)			
ECTS Credit	8	Workload	200 (Hours)	Theory	3	Practice	0	Laboratory	0
Objectives of the Course		The main obje systems from techniques, an knowledge re unsupervised machines, de the course wil	ective of this c an engineerir nd algorithms presentation, learning, ove cision trees, r I also get stud	ourse is to er ng perspective in machine le classification, rfitting and ur nearest-neigh lents acquain	nable the s e. To this e earning, su , informatic nderfitting, ,bor algorit ,ted with m	tudents to designed, the course ich as inductive on gain, feature cross validatio hms, and Baye achine learnin	ign and impl gives an ov e versus ded e selection, s n, perceptro esian networ g libraries su	ement inductive le verview of many co luctive reasoning, supervised and ns, support vector ks. For practical p uch as Weka and I	arning oncepts, urposes Mahout.
Course Content		The topics to Introduction Inductive ver Knowledge of Types of ind Supervised Overfitting a Cross valida Learning wit Learning wit Learning wit Learning wit Learning wit Learning wit Evaluating le Kappa statis Feature sele Deep learning	be covered ar to learning the rsus deductive epresentation uctive learning versus unsuper nd underfitting tion h decision tree gain h support vec h perceptrons h kNN algorith earning perfor tics ction	e the followin eories and ma e learning g ervised learni d es tor machines s mms mances	ıg: achine lear	rning			
Work Placement N/A									
Planned Learning Activities and Teaching Methods		Explanation (Presentation), Experiment, Demonstration, Discussion, Case Study, Project Based Study, Individual Study, Problem Solving							

Name of Lecturer(s)

Assessment Methods and Criteria

Method	Quantity	Percentage (%)	
Midterm Examination	1	20	
Final Examination	1	40	
Quiz	2	10	
Assignment	1	30	

Recommended or Required Reading

	· · ·
1	Tom Mitchell. Machine Learning. McGraw-Hill, 1997.
2	Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach. Prentice Hall, 2003.
3	Ethem Alpaydın. Introduction to Machine Learning. The MIT Press, 2004, 2010.
4	Ethem Alpaydın. Yapay Öğrenme. Boğaziçi Üniversitesi Yayınevi, 2011, 2013.

Week	Weekly Detailed Course Contents				
1	Theoretical	Introduction to learning theories and machine learning.			
2	Theoretical	Inductive and deductive learning.			
3	Theoretical	Knowledge representation and model selection.			
4	Theoretical	Supervised learning.			
5	Theoretical	Decision trees.			
6	Theoretical	Information gain and feature selection.			
7	Theoretical	Cross-validation, boosting, pruning, overfitting, undefitting.			
8	Intermediate Exam	Midterm Exam			
9	Theoretical	Perceptrons.			

10	Theoretical	Support vector machines.	
11	Theoretical	Nearest-neighbor algorithms.	
12	Theoretical	Naïve-Bayes algorithms.	
13	Theoretical	Unsupervised learning: clusterin	g.
14	Theoretical	Evaluating experimental results.	
15	Theoretical	Deep learning.	
16	Final Exam	Final Exam	

Workload Calculation

Hornood Calculation						
Activity	Quantity	Preparation	Duration	Total Workload		
Lecture - Theory	14	0	3	42		
Assignment	5	10	2	60		
Term Project	1	15	7	22		
Quiz	4	5	0.5	22		
Midterm Examination	1	20	2	22		
Final Examination	1	30	2	32		
	200					
	8					
25 hour workload is accepted as 1 ECTS						

Learning Outcomes

1	Have a good understanding of fundamental notions of inductive learning from data: data, hypothesis space, search space complexity, information gain, feature selection, learning algorithms, etc.,
2	Comparatively evaluate learning algorithms,
3	Know how to collect, trim, and annotate data
4	Understand how to apply learning algorithms to data
5	Know how to evaluate the results of machine learning experiments

Programme Outcomes (Civil Engineering (English) Master)

1 logi	
1	To be able to develop expertise knowledge in a civil engineering area founded on their graduate competence.
2	To be able to use the theoretical and practical expertise knowledge gained in their specialty area.
3	To be able to use the information, problem solving and / or practical skills from the field, in interdisciplinary studies.
4	To be able to create new knowledge by integrating their knowledge area with the knowledge coming from different disciplines; and solve problems that need expertise by using scientific research methods
5	To be able to solve the problems related to his/her area by using appropriate research methods
6	To be able to devise a problem in their specialty area, develop a solution methodology, solve the problem, and interpret the results and take action if necessary
7	To be able to criticize the knowledge in their specialty area, guide the learning process, and independently direct high level studies
8	To be able to systematically communicate the recent developments in their specialty area and their own studies to groups both inside and outside their specialty area, orally, in writing and visually
9	To be able to use computer software at a level required by their specialty area with drawing upon information and communication technology at a high level
10	To be able to introduce scientific, technological, social and cultural advancements in the field of civil engineering and to contribute to the process of being an information of the society and to sustain it.
11	To be conscious of professional and ethical responsibility and contribute to the establishment of this consciousness.
12	To be able to protect social, scientific, and ethical values during collection, interpretation, and dissemination stages of the data associated with their specialty area; instruct and supervise these values
13	To be able to use at least one foreign language in a level to follow current developments related to the field.

Contribution of Learning Outcomes to Programme Outcomes 1: Very Low, 2: Low, 3: Medium, 4: High, 5: Very High

L1	L2	L3	L4	L5
5	5	5	5	4
4	4	4	4	5
5	5	5	5	4
4	4	4	4	5
5	5	5	5	4
	L1 5 4 5 4 5 5	L1 L2 5 5 4 4 5 5 4 4 5 5 5 5	L1L2L3555444555444555	L1L2L3L455554444555544445555

Course Information Form

P6	4	4	4	4	5
P7	5	5	5	5	4
P8	4	4	4	4	5
P9	5	5	5	5	4
P10	4	4	4	4	5
P11	5	5	5	5	4
P12	4	4	4	4	5
P13	5	5	5	5	4