

AYDIN ADNAN MENDERES UNIVERSITY COURSE INFORMATION FORM

Course Title	Birth and History of	Mathematics						
Course Code	MTE525	Couse	e Level	Second Cycle (Master's Degree)				
ECTS Credit 8	Workload 200	(Hours) Theor	у 3	Practice	0	Laboratory	0	
Objectives of the Course	The main purpose of emergence of these		to examine the	development o	f number ar	nd figure concepts t	from the	
Course Content	Development proce geometry, solids, a theorem, logarithm, structures, solving	nalytic geometry, r	y, modern geom measures, metri	netry, geometry c system, sets,	tools, algebintegral, co	ora, equations, Binomputers, numbers,	m	
Work Placement N/A								
Planned Learning Activities and Teaching Methods			nation (Presenta	ation), Discussio	on, Individua	al Study, Problem S	Solving	
Name of Lecturer(s)								

Assessment Methods and Criteria						
Method	Quantity	Percentage (%)				
Midterm Examination	1	30				
Final Examination	1	70				

Recommended or Required Reading

1 Florian Cajori, Matematik Tarihi, Odtü Yayınları, 2014

Week	Weekly Detailed Cour	irse Contents					
1	Theoretical	Calculus technic, number systems, digits and calculus art in old Egyptions.					
2	Theoretical	Did Egypt Geometry.					
3	Theoretical	Sumerian Calculus technic, sixty based system.					
4	Theoretical	Babylon mathematics, babylon algebra and geometry.					
5	Theoretical	Old Greece mathematics, Thales.					
6	Theoretical	Pythagorean, Zeno, Demokritus					
7	Theoretical	Archytas, Platon, Eudoxus, Aristo.					
8	Intermediate Exam	MIDTERM EXAM					
9	Theoretical	Euclidean and elements of euclidean.					
10	Theoretical	Eratosthenes and Apolonyus, cause of Old Greece Civilisation collapse.					
11	Theoretical	Heron, Batlamyus, Diyafont, Pappus, Hypatia.					
12	Theoretical	Archimedes, Harezmi.					
13	Theoretical	Abdülhamid İbni Türk, Sabit Bin Kurra.					
14	Theoretical	Ömer Hayyam, Nasıreddin-i Tusi.					
15	Theoretical	Mathematics in Islamic Civilisation.					
16	Final Exam	FINAL EXAM					

Workload Calculation							
Activity	Quantity	Quantity Preparation		Duration		Total Workload	
Lecture - Theory	14		5	3		112	
Midterm Examination	1		38	2		40	
Final Examination	1 46		46	2		48	
	rs)	200					
[Total Workload (Hours) / 25*] = ECTS						8	
*25 hour workload is accepted as 1 ECTS							

Learning Outcomes

- 1 Express the process of history of mathematics
- 2 Explain the calculus technic and number systems in old Egyptions.

3	Explain the sumerian Calculus technic and sixty based system.						
4	Intrepret the history of zero and Pi number.						
5	Explain Babylon mathematics, Babylon algebra and geometry.						
6	Explain Mathematics in Islamic Civilisation.						

Progr	amme Outcomes (Mathematics Education Master)							
1	Learns sufficient theoretical knowledge in the field of mathematics education							
2	Uses theoretical knowledge in educational settings							
3	Integrates mathematics education knowledge with the other disciplines and products functional knowledge							
4	Uses information and communication technologies efficiently in conceptual learning							
5	Finds scientific solutions to the problems in the field of mathematics education							
6	Evaluates the knowledge critically in the field							
7	Participates team projects in the mathematics education field							
8	Shares national and international data in the field of mathematics education							
9	Comprehends and evaluates science-technology-society and mathematics interactions							
10	Comprehends mathematics under the ethical values and takes account of ethical considerations							
11	Follows the current development in the mathematics education field							
12	Develops strategical plans and evaluates them in the context of quality processes							
13	Adopts lifelong learning strategies to his/her studies							

Contribution of Learning Outcomes to Programme Outcomes 1:Very Low, 2:Low, 3:Medium, 4:High, 5:Very High

		L1	L2	L3	L4 ¶	L5	L6
	P1	1	1	1	1	1	1
	P3	3	3	3	3	3	3
	P5	3	3	3	3	3	3
	P6	4	4	4	4	4	4
	P9	1	1	1	1	1	1
ĺ	P13	4	4	4	4	4	4

