

#### AYDIN ADNAN MENDERES UNIVERSITY COURSE INFORMATION FORM

| Course Title                                                                      | Algebraic Thinking                                                                                                                                                              |             |             |            |                                |               |                   |                     |             |
|-----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------------|------------|--------------------------------|---------------|-------------------|---------------------|-------------|
| Course Code                                                                       | MTE520                                                                                                                                                                          |             | Couse Level |            | Second Cycle (Master's Degree) |               |                   |                     |             |
| ECTS Credit 8                                                                     | Workload                                                                                                                                                                        | 200 (Hours) | Theory      | ,          | 3                              | Practice      | 0                 | Laboratory          | 0           |
| Objectives of the Course At the end of this course st able to conduct research of |                                                                                                                                                                                 |             |             |            |                                | ge about pers | pectives of a     | lgebraic thinking a | and will be |
| Course Content                                                                    | Development of algebraic thinking of individuals, perspectives of geometric thinking, working on act to foster algebraic thinking, and literature review of algebraic thinking. |             |             |            |                                | activities    |                   |                     |             |
| Work Placement N/A                                                                |                                                                                                                                                                                 |             |             |            |                                |               |                   |                     |             |
| Planned Learning Activities and Teaching Methods                                  |                                                                                                                                                                                 | Explan      | ation       | (Presentat | tion), Discussi                | on, Case Stu  | dy, Problem Solvi | ng                  |             |
| Name of Lecturer(s)                                                               | Lec. Deniz ÖZ                                                                                                                                                                   | EN ÜNAL     |             |            |                                |               |                   |                     |             |

### **Assessment Methods and Criteria**

| Method              | Quantity | Percentage (%) |  |
|---------------------|----------|----------------|--|
| Midterm Examination | 1        | 30             |  |
| Final Examination   | 1        | 70             |  |

## **Recommended or Required Reading**

| 1 | Driscoll, M. (1999). Fostering Algebraic Thinking: A Guide for Teachers, Grades 6-10. Heinemann, 361 Hanover Street, Portsmouth, NH 03801-3912. |
|---|-------------------------------------------------------------------------------------------------------------------------------------------------|
| 2 | Arcavi, A. (1995). Teaching and learning algebra: Past, present, and future. The Journal of Mathematical Behavior, 14(1), 145-<br>162.          |
| 3 | Kieran, C. (2004). Algebraic thinking in the early grades: What is it. The Mathematics Educator, 8(1), 139-151.                                 |
| 4 | Kieran, C. (1992). The learning and teaching of algebra. Handbook of research on mathematics teaching and learning, 390-<br>419.                |

| Week | Weekly Detailed Cour | se Contents                                                                                        |
|------|----------------------|----------------------------------------------------------------------------------------------------|
| 1    | Theoretical          | The nature of algebraic thinking, what is algebraic thinking, basic concepts of algebraic thinking |
| 2    | Theoretical          | The development of algebraic reasoning                                                             |
| 3    | Theoretical          | The generalization perspective in the development of algebraic reasoning                           |
| 4    | Theoretical          | The problem solving perspective in the development of algebraic reasoning                          |
| 5    | Theoretical          | The modelling perspective in the development of algebraic reasoning                                |
| 6    | Theoretical          | The modelling perspective in the development of algebraic reasoning                                |
| 7    | Theoretical          | The functional perspective in the development of algebraic reasoning                               |
| 8    | Intermediate Exam    | Midterm exam                                                                                       |
| 9    | Theoretical          | The functional perspective in the development of algebraic reasoning                               |
| 10   | Theoretical          | The use of technology in the development of algebraic reasoning                                    |
| 11   | Theoretical          | The student difficulties and misconceptions in the development of algebraic thinking               |
| 12   | Theoretical          | The student difficulties and misconceptions in the development of algebraic thinking               |
| 13   | Theoretical          | Investigation and evaluation of studies, evaluations of curriculums.                               |
| 14   | Theoretical          | Investigation and evaluation of studies, evaluations of curriculums.                               |
| 15   | Theoretical          | Investigation and evaluation of studies, evaluations of curriculums.                               |
| 16   | Final Exam           | General assesment                                                                                  |

## **Workload Calculation**

| Activity            | Quantity | Preparation | Duration | Total Workload |  |  |  |
|---------------------|----------|-------------|----------|----------------|--|--|--|
| Lecture - Theory    | 14       | 5           | 3        | 112            |  |  |  |
| Midterm Examination | 1        | 38          | 2        | 40             |  |  |  |



|                                              |   |  |    |   | Course information Form |  |
|----------------------------------------------|---|--|----|---|-------------------------|--|
| Final Examination                            | 1 |  | 46 | 2 | 48                      |  |
| Total Workload (Hours)                       |   |  |    |   |                         |  |
| [Total Workload (Hours) / 25*] = <b>ECTS</b> |   |  |    |   | 8                       |  |
| *25 hour workload is accepted as 1 ECTS      |   |  |    |   |                         |  |

Learning Outcomes

| Louin |                                                                                                                       |
|-------|-----------------------------------------------------------------------------------------------------------------------|
| 1     | Explain algebra and algebraic thinking.                                                                               |
| 2     | Investigate transition from arithmetic to algebra, quantitative reasoning and the development of algebraic reasoning. |
| 3     | Analyze the basic concepts of algebraic thinking.                                                                     |
| 4     | Investigate students' difficulties in algebraic thinking and misconceptions.                                          |
| 5     | To be able to write academically specific to the field.                                                               |
|       |                                                                                                                       |

Programme Outcomes (Mathematics Education Master)

| 1  | Learns sufficient theoretical knowledge in the field of mathematics education                           |
|----|---------------------------------------------------------------------------------------------------------|
| 2  | Uses theoretical knowledge in educational settings                                                      |
| 3  | Integrates mathematics education knowledge with the other disciplines and products functional knowledge |
| 4  | Uses information and communication technologies efficiently in conceptual learning                      |
| 5  | Finds scientific solutions to the problems in the field of mathematics education                        |
| 6  | Evaluates the knowledge critically in the field                                                         |
| 7  | Participates team projects in the mathematics education field                                           |
| 8  | Shares national and international data in the field of mathematics education                            |
| 9  | Comprehends and evaluates science-technology-society and mathematics interactions                       |
| 10 | Comprehends mathematics under the ethical values and takes account of ethical considerations            |
| 11 | Follows the current development in the mathematics education field                                      |
| 12 | Develops strategical plans and evaluates them in the context of quality processes                       |
| 13 | Adopts lifelong learning strategies to his/her studies                                                  |

# Contribution of Learning Outcomes to Programme Outcomes 1: Very Low, 2: Low, 3: Medium, 4: High, 5: Very High

|     | L1 | L2 | L3 | L4 | L5 |
|-----|----|----|----|----|----|
| P1  | 5  | 5  | 5  | 5  | 4  |
| P2  | 5  | 5  | 5  | 5  |    |
| P3  | 5  | 5  | 5  | 5  |    |
| P4  | 5  | 5  | 4  | 4  |    |
| P5  | 5  | 5  | 5  | 5  |    |
| P6  | 5  | 5  | 5  | 5  |    |
| P7  | 5  | 5  | 5  | 5  |    |
| P8  | 5  | 5  | 5  | 5  |    |
| P9  | 5  | 5  | 5  | 5  |    |
| P10 | 4  | 4  | 4  | 4  |    |
| P11 | 5  | 5  | 5  | 5  |    |
| P12 | 5  | 5  | 5  | 5  |    |
| P13 | 4  | 4  | 4  | 4  |    |