AYDIN ADNAN MENDERES UNIVERSITY COURSE INFORMATION FORM | Course Title | Philosophy and | Symbolic Lo | gic of Mathe | ematics | | | | | |-----------------------------|--|--|--|--|---|------------------------|--------------------|---------| | Course Code | MTE526 | | Couse Level | | Second Cycle | /cle (Master's Degree) | | | | ECTS Credit 8 | Workload 2 | 00 (Hours) | Theory | 3 | Practice | 0 | Laboratory | 0 | | Objectives of the Course | Needed to condu | | ch in mathen | natics edu | cation to ensu | re the creati | on of philosophica | l and | | Course Content | concepts and pro
and philosophica
applicability. Fre
of the pioneers. | opositions, a
al problems
ge, Russell,
Principles a | and mathema
about the na
Hilbert, Bround
theories o | atical expre
ture of ma
uwer and (
of the philo | mbers, sets, functions, etc. meanings of mathematical expressions. The foundations of mathematics, methods, mathematics. Objectivity in mathematics and real-world Gödel's philosophy of mathematics, such as the world hilosophy of mathematics: Mantikçilik (Logisicm), alism), and Intuitionism (Intuitionism) | | | | | Work Placement | N/A | | | | | | | | | Planned Learning Activities | and Teaching Me | ethods | Explanation | (Presenta | tion), Discussi | on, Individu | al Study, Problem | Solving | | Name of Lecturer(s) | | | | | | | | _ | | Assessment Methods and Criteria | | | | | | | |---------------------------------|----------|----------------|--|--|--|--| | Method | Quantity | Percentage (%) | | | | | | Midterm Examination | 1 | 30 | | | | | | Final Examination | 1 | 70 | | | | | ## **Recommended or Required Reading** 1 Stephan F. Barker; Matematik Felsefesi, İmge Kitapevi, 2003 | Week | Weekly Detailed Cour | se Contents | | | | | | |------|-----------------------------|--|--|--|--|--|--| | 1 | Theoretical | What is Mathematics? | | | | | | | 2 | Theoretical | The nature of mathematics | | | | | | | 3 | Theoretical | Ontology of mathematics | | | | | | | 4 | Theoretical | Epistemology of mathematics | | | | | | | 5 | Theoretical | Meanings of mathematical expressions | | | | | | | 6 | Theoretical | Basic Theories in Philosophy of Mathematics | | | | | | | 7 | Theoretical | The historical development of mathematics as a discipline and its educational implications | | | | | | | 8 | Intermediate Exam | Midterm Exam | | | | | | | 9 | Theoretical | Philosophy and logic | | | | | | | 10 | Theoretical | Propositions and its basic features | | | | | | | 11 | Theoretical | Conjunctions and accuracy tables | | | | | | | 12 | Theoretical | Quantifiers, mathematical proof and methods of proof | | | | | | | 13 | Theoretical | Set Theory, binary operations | | | | | | | 14 | Theoretical | Set operations | | | | | | | 15 | Theoretical | Multiplication sets | | | | | | | 16 | Final Exam | Final Exam | | | | | | | Workload Calculation | | | | | | | | |---|----------|-------------|----------------------|-----|--|--|--| | Activity | Quantity | Preparation | Preparation Duration | | | | | | Lecture - Theory | 14 | 5 | 3 | 112 | | | | | Midterm Examination | 1 | 38 | 2 | 40 | | | | | Final Examination | 1 | 46 | 2 | 48 | | | | | | 200 | | | | | | | | | 8 | | | | | | | | *25 hour workload is accepted as 1 ECTS | | | | | | | | | Learn | ning Outcomes | |-------|---| | 1 | Explain the importance of philosophical, mathematical logic | | 2 | Refers to the meaning of mathematical expressions | | 3 | Explain the relationship between philosophy and the philosophy of mathematics education | | 4 | Explain the basic theories of the philosophy of mathematics | | 5 | Explain the symbolic logic and applications on symbolic logic | | 6 | Express concept of set and solve related operations | | Learns sufficient theoretical knowledge in the field of mathematics education Uses theoretical knowledge in educational settings Integrates mathematics education knowledge with the other disciplines and products functional knowledge Uses information and communication technologies efficiently in conceptual learning Finds scientific solutions to the problems in the field of mathematics education | | |--|--| | 3 Integrates mathematics education knowledge with the other disciplines and products functional knowledge 4 Uses information and communication technologies efficiently in conceptual learning | | | 4 Uses information and communication technologies efficiently in conceptual learning | | | | | | 5 Finds scientific solutions to the problems in the field of mathematics education | | | | | | 6 Evaluates the knowledge critically in the field | | | 7 Participates team projects in the mathematics education field | | | 8 Shares national and international data in the field of mathematics education | | | 9 Comprehends and evaluates science-technology-society and mathematics interactions | | | 10 Comprehends mathematics under the ethical values and takes account of ethical considerations | | | 11 Follows the current development in the mathematics education field | | | 12 Develops strategical plans and evaluates them in the context of quality processes | | | 13 Adopts lifelong learning strategies to his/her studies | | ## Contribution of Learning Outcomes to Programme Outcomes 1:Very Low, 2:Low, 3:Medium, 4:High, 5:Very High | | L1 | L2 | L3 | L4 | L5 | L6 | |-----|----|----|----|----|----|----| | P1 | 3 | 3 | 3 | 3 | 3 | 3 | | P2 | 2 | 2 | 2 | 2 | 2 | 2 | | P3 | 1 | 1 | 1 | 1 | 1 | 1 | | P5 | 2 | 2 | 2 | 2 | 2 | 2 | | P6 | 1 | 1 | 1 | 1 | 1 | 1 | | P8 | 2 | 2 | 2 | 2 | 2 | 2 | | P9 | 1 | 1 | 1 | 1 | 1 | 1 | | P10 | 3 | 3 | 3 | 3 | 2 | 2 | | P13 | 5 | 5 | 5 | 5 | 5 | 5 |