

AYDIN ADNAN MENDERES UNIVERSITY COURSE INFORMATION FORM

Course Title	Molecular Systematic						
Course Code	ZBY509	Couse L	_evel	Second Cycle (Master's Degree)			
ECTS Credit 7	Workload 178 (Ho	ours) Theory	2	Practice	2	Laboratory	0
Objectives of the Course	chloroplasts, r	nitochondria, 1 USTAL W, PH	6S, gene reg	animals, fungi a ions and markers /logenetic trees a	s using		
Course Content Taxonomy, morphological markers, protein markers, nuclear, chloroplast, mitochondria, 16S, introducti of regions, DNA sequencing and sequence analysis techniques, PAUP, MEGA 6.0, CLUSTAL, Phylogeny fr. introduction of phylogenetic tree programs such as ISSR, RAPD, AFLP, SSR, VNTR in the phylogenetic use of markers.							
Work Placement	N/A						
Planned Learning Activities and Teaching Methods			ation (Presenta	tion), Demonst	tration, Discus	sion, Case Stud	y
Name of Lecturer(s) Assoc. Prof. Emre SEVINDIK							

Method	Quantity	Percentage (%)	
Midterm Examination		1	40
Final Examination		1	60

Recommended or Required Reading

1	Evolution, Palme Publishing
2	Nei M, Kumar S (2000) Molecular evolution and phylogenetics. Oxford University press
3	Lemey, P., Salemi, M., Vandamme, A.M. (2009). The Phylogenetic Handbook. Cambridge University press ISBN:9780521877107

Week	Weekly Detailed Course Contents				
1	Theoretical	Basis and purpose of classification			
	Practice	Laboratory tools used in molecular systems			
2	Theoretical	Teaching systematic science			
	Practice	Laboratory tools used in molecular systems			
3	Theoretical	To applicate molecular techniques to working branches			
	Practice	Morphological characterization and cladistic analysis			
4	Theoretical	Morphological and protein markers learning			
	Practice	Protein markers and SDS page application			
5	Theoretical	Learning SSR, VNTR, ISSR, RAPD, AFLP etc. markers			
	Practice	Restriction fragment length polymorphism (RFLP) and random amplified polymorphic DNA application			
6	Theoretical	Teaching of nuclear, chloroplast and mitochondrial gene regions			
	Practice	ISSR and AFLP application			
7	Theoretical	Phylogenetic classifications, ability of use phenetic classifications techniques			
	Practice SSR and VNTR application				
8	Intermediate Exam	Midterm Exam			
9	Theoretical	In phylogenetic classification used in online programs used			
	Practice	nrDNA ITS sequence and analysis			
10	Theoretical	PAUP, MEGA 6.0, PHYLIP, etc. use of phylogenetic programs			
	Practice	cpDNA trnL-F, ndhF, matK rbcL, psbA-trnH analysis			
11	Theoretical	Phylogenetic tree building using computer program			
	Practice	mtDNA sequence			
12	Theoretical	Interpretation of phylogenetic tree			
	Practice	DNA sequence analysis			
13	Theoretical	Molecular clock hypothesis, Relative velocity test, Linear trees			

Course Information Form

13	Practice	Bioinformatics programs			
14	Theoretical	Relationship between systematic concepts and molecular techniques			
	Practice	Phylogenetic tree and analysis			
15	Theoretical	An article analysis is made about the molecular systematic.			
	Practice	Genetic distance analysis			
16	Final Exam	Final Exam			

Workload Calculation

Activity	Quantity	Preparation	Duration	Total Workload	
Lecture - Theory	14	5	2	98	
Lecture - Practice	14	3	2	70	
Midterm Examination	1	4	1	5	
Final Examination	1	4	1	5	
	178				
[Total Workload (Hours) / 25*] = ECTS					

*25 hour workload is accepted as 1 ECTS

Learning Outcomes

1	Learning morphological and protein markers			
2	Learning of encoding and non-coding gene regions used in phylogenetics			
3	Learning of various bioinformatics computer programs used in phylogenetics.			
4	Learning of the use of molecular marker techniques in phylogenetic studies			
5	PAUP analysis and interpretation are learned			

Programme Outcomes (Agricultural Biotechnology Master)

1	Students learn various techniques and evaluates resources about agricultural biotechnology	
2	Make the necessary projects in agricultural biotechnology and to conduct a study of the basic level independently	
3	Students learns how to conduct a scientific research and prepares themself for the scientists in the direction of their ideals.	
4	Students may reveal new ideas in social and scientific issues and can benefit from the ideas and produce something new winning independent and teamwork skills.	
5	Students can use its products for the benefit of humanity, they can produce technology and collaborate with industry	

Contribution of Learning Outcomes to Programme Outcomes 1: Very Low, 2: Low, 3: Medium, 4: High, 5: Very High

	L1	L2	L3	L4	L5
P1	5	5	5	5	5
P2	5	5	5	5	4
P3	5	5	5	5	4
P4	5	4	4	5	4
P5	3	3	3	3	3

