

AYDIN ADNAN MENDERES UNIVERSITY COURSE INFORMATION FORM

Course Title Prokaryotic Gene Ex		ene Expressio	n						
Course Code		ZBY513		Couse Level		Second Cycle (Master's Degree)			
ECTS Credit	7	Workload	178 <i>(Hours)</i>	Theory	3	Practice	0	Laboratory	0
			The objective of this course is to provide an overview of prokaryotic gene structure, function and egulation of the gene expression						
Course Content			hanisms of D	NA synthesis				and function, know aryotes, and how	
Work Placement		N/A							
Planned Learning Activities and Teaching Methods		Methods	Explanation	(Presenta	tion), Discussi	on, Case Stu	dy, Individual Stu	dy	
Name of Lecturer(s)									

Assessment Methods and Criteria

Assessment methods and officina		
Method	Quantity	Percentage (%)
Midterm Examination	1	30
Final Examination	1	60
Assignment	1	10

Recommended or Required Reading

1	Watson, J.D., et al. Molecular Biology of the Gene. 4. ed. The Benjamin/Cummings Pub. Co., Menlo Park, California, 1988
2	Alberts, B., et al. Molecular Biology of the Cell. 3. ed. Garland Pub., New York, 1994
3	Lewin, B. Genes VII. Oxford University Pres, Oxford, 2000
4	Biology of the Prokaryotes, Lengeler, J., Schlegal, H. (Eds), 1999, Blackwell Publishing, Stutgart, Germany
5	The World of the Cell, Becker, W.M., Kleinsmith, L.J., and Hardin, J.,2000, Addison Wesley Publishing Company, Masachusetts, U.S.A.
6	Wagner, R. Transcription Regulation in Prokaryotes. Oxford University Press, 2000.

Week	Weekly Detailed Cour	se Contents						
1	Theoretical	General view of the prokaryotic cell, cell growth and cell cycle						
2	Theoretical	*DNA Structure and Genetic Information *Supercoiling and histone like proteins *Chromosomes and Other Genetic Elements *Analytic methods in DNA and RNA research						
3	Theoretical	*Mechanisms of DNA replication in prokaryotes *Short overview of eukaryotic DNA replication						
4	Theoretical	*Mechanisms of Transcription in prokaryotes *Short overview of eukaryotic Transcription						
5	Theoretical	Mechanisms of translation in prokaryotes						
6	Theoretical	*Short overview of eukaryotic translation *Genetic code *Protein Folding and Secretion *Molecular chaperones *Expressing Genes in Bacteria						
7	Theoretical	*REGULATION *DNA-Binding Proteins and Transcriptional Regulation *Negative control' versus 'positive control'						
8	Intermediate Exam	Midterm exam						
9	Theoretical	*Catabolite Repression *Sensing and Signal Transduction *Quorum Sensing *Heat Shock Proteins *Stringent Response						

10	Theoretical	*Alternative sigma factors *RNA-Based Regulation *Attenuation
11	Theoretical	Regulation of translation and post-translational modifications
12	Theoretical	*Methods for Manipulating DNA *Essentials of Molecular Cloning *Molecular Methods for Mutagenesis
13	Theoretical	*Gene Fusions and Reporter Genes *Cloning Vectors, Shuttle Vectors
14	Theoretical	Hosts for Cloning Vectors
15	Theoretical	Expression Vectors and Regulation of Transcription
16	Final Exam	Final exam

Workload Calculation

Activity		Quantity	Preparation		Duration	Total Workload
Lecture - Theory		14		8	3	154
Assignment		1		6	1	7
Midterm Examination		1		7	1	8
Final Examination		1		8	1	9
Total Workload (Hours)						178
[Total Workload (Hours) / 25*] = ECTS						7
*25 hour workload is accepted as 1 ECTS						

Learning Outcomes

1	Assess prokaryotic gene structure and function.	
2	Gain knowledge about the mechanisms of DNA synthesis, transcription and translation in prokaryotes.	
3	Tell how the gene expression is regulated in prokaryotes.	
4	Genetic Transfer Methods in Bacteria	
5	The use of basic plasmids in cloning	

Programme Outcomes (Agricultural Biotechnology Master)

•	()	0,	/	
1	Students learn various techniques and ev	aluates re	esources about agricultural biote	chnology
2	Make the necessary projects in agricultur	al biotechi	nology and to conduct a study of	the basic level independently
3	Students learns how to conduct a scientif	ic researc	ch and prepares themself for the	scientists in the direction of their ideals.
4	Students may reveal new ideas in social a winning independent and teamwork skills		tific issues and can benefit from t	he ideas and produce something new
5	Students can use its products for the ben	efit of hum	manity, they can produce technol	ogy and collaborate with industry

Contribution of Learning Outcomes to Programme Outcomes 1: Very Low, 2: Low, 3: Medium, 4: High, 5: Very High

	0							
	L1	L2	L3	L4	L5			
P1	5	5	5	4	3			
P2	5	5	5	4	4			
P3	5	5	5	3	4			
P4	4	5	5	3	3			
P5	2	3	3	4	4			

