

AYDIN ADNAN MENDERES UNIVERSITY COURSE INFORMATION FORM

Course Title		Plant Molecular Biology and Genetics							
Course Code		ZBY514		Couse Level		Second Cycle (Master's Degree)			
ECTS Credit 8		Workload	206 (Hours)	Theory	2	Practice	2	Laboratory	0
Objectives of the Course		The aim of class, at the definition of molecular biology, history, application areas and importance, structure of plant cell, function and evolutionary development, structure of nucleic acid and amino acids, structural properties of DNA and storage of genetic material, DNA replication and repair, structure of RN regulation of organelle genome and chloroplast and mitochondrial gene expression, transcription, RNA modification, protein synthesis, directing and degradation, promoter activity, cis-akting elements and transcription factors, transposable elements and broad silencing, organization and structure of plant genome, the signaling mechanism at the plant cell and the cell cycle.						no acids, ure of RNA on, RNA s and	
Course Content		Functions of biomolecules in plants, DNA-RNA structure, replication and protein synthesis, nucleus a organelle genomes, signaling mechanisms in plants.					leus and		
Work Placement		N/A							
Planned Learning Activities and Teaching N		Methods	Explanation Individual S		tion), Experime	ent, Demons	stration, Case Stud	dy,	
Name of Lecturer(s) Assoc. Prof. Emre SEVIND		iκ							

Assessment Methods and Criteria						
Method	Quantity	Percentage (%)				
Midterm Examination	1	40				
Final Examination	1	60				

Recommended or Required Reading

1	Plant Biotechnology and Genetics (Nobel Academic Publishing) 2012
0	Ormatia (Nachal Associations) 2040

2 Genetic (Nobel Academic Publishing) 2010

Week	Weekly Detailed Cour	se Contents				
1	Theoretical	Molecular biology, history, application areas and importance				
	Practice	Laboratory introduction				
2	Theoretical	Structure of plant cell, function and development,				
	Practice	Laboratory safety				
3	Theoretical	Structure of biomolecules in plants				
	Practice	Use of laboratory chemicals				
4	Theoretical	Genetic and structural properties of DNA				
	Practice	Isolation of genomic DNA with different protocols				
5	Theoretical	Structure and properties of RNA				
	Practice	RNA isolation				
6	Theoretical	RNA modification, protein synthesis and degradation				
	Practice	Electrophoresis method				
7	Theoretical	Transcription factors, transposable elements and broad silencing				
	Practice	Gel imaging of DNA and RNA products				
8	Intermediate Exam	Midterm				
9	Theoretical	Organization and structure of plant genome				
	Practice	PCR types and application				
10	Theoretical	Regulation of organelle genome and chloroplast and mitochondrial gene expression				
	Practice	Teaching of markers (ISSR, RAPD, AFLP, SSR, VNTR) and application by PCR and gel imaging by electrophoresis				
11	Theoretical	Disease tolerance and related genes in plants				
	Practice	PCR amplification of nucleotide, chloroplast and mitochondrial gene regions				
12	Theoretical	Molecular systematic techniques used in plant research				
	Practice	DNA sequencing and sequence analysis				
13	Theoretical	Signal system and cell cycle in plant cell				

13	Practice	Bioinformatics analyzes			
14	Theoretical	Genetically modified organisms and transgenic plants			
	Practice	Phylogenetic analyzes			
15	Theoretical	Overview			
	Practice	Phylogenetic analyzes II			
16	Final Exam	Final Exam			

Workload Calculation

Activity	Quantity	Preparation	Duration	Total Workload		
Lecture - Theory	14	7	2	126		
Lecture - Practice	14	3	2	70		
Midterm Examination	1	4	1	5		
Final Examination	1	4	1	5		
	206					
[Total Workload (Hours) / 25*] = ECTS						

*25 hour workload is accepted as 1 ECTS

Learning Outcomes

1	The function of biomolecules is learned
2	Learn DNA-RNA structure
3	Learn plant genome structure
4	Learn nucleus and organelle gene expression
5	Transcriptom and Microarrays are learned

Programme Outcomes (Agricultural Biotechnology Master)

•		
1	Students learn various techniques and evaluates resources about agricultural biotechnology	
2	Make the necessary projects in agricultural biotechnology and to conduct a study of the basic level independently	
3	Students learns how to conduct a scientific research and prepares themself for the scientists in the direction of their ideals.	
4	Students may reveal new ideas in social and scientific issues and can benefit from the ideas and produce something new winning independent and teamwork skills.	
5	Students can use its products for the benefit of humanity, they can produce technology and collaborate with industry	

Contribution of Learning Outcomes to Programme Outcomes 1: Very Low, 2: Low, 3: Medium, 4: High, 5: Very High

	L1	L2	L3	L4	L5
P1	5	5	5	5	5
P2	5	5	5	5	4
P3	5	5	5	5	4
P4	4	5	4	4	5
P5	3	4	2	2	4

