

AYDIN ADNAN MENDERES UNIVERSITY COURSE INFORMATION FORM

Course Title	Crossing Techniques and Plant Breeding in Plants							
Course Code	ZBY521		Couse Level		Second Cycle (Master's Degree)			
ECTS Credit 7	Workload	178 (Hours)	Theory	2	Practice	2	Laboratory	0
Objectives of the Course	To teach how	crosssing is	done and its i	importance	e in plants			
Course Content	What is hybrid	ization? The i	nurnose of cr	nsshreedi	na includes fert	ilization hio	logy in plants, cha	racters in
	plants, gene-cl	haracter relat	ionship, pollir	nation and		nfertility and	d control, standard	
Work Placement	plants, gene-cl	haracter relat	ionship, pollir	nation and	control, male in	nfertility and	d control, standard	
Work Placement Planned Learning Activities	plants, gene-cl hybrid seed pr N/A	haracter relat oduction, isol	ionship, pollir ation and imp	nation and portance, a (Presenta	control, male in application of se ation), Experime	nfertility and election and	d control, standard	and

Assessment Methods and Criteria

Method	Quantity	Percentage (%	
Midterm Examination	1	40	
Final Examination	1	60	

Recommended or Required Reading

1

Cross-Breeding and Hybridizing: The Philosophy of the Crossing of Plants, Considered With Reference to Their Improvement Under Cultivation; With a Brief Bibliography of the Subject (Classic Reprint) Hardcover – February 23, 2018 by Liberty Hyde Bailey.

Week	Weekly Detailed Cours	e Contents
1	Theoretical & Practice	Theoretical: The importance and scope of crossbreeding Application: Tools used in crossbreeding
2	Theoretical & Practice	Theoretical: Hybridization techniques Application: Instrument sterilization in hybridization
3	Theoretical & Practice	Theoretical: Plant breeding and crossbreeding relationship Application: Pollen collection techniques
4	Theoretical & Practice	Theoretical: The importance of genetic characters in crossbreeding Application: Techniques for preserving pollen viability
5	Theoretical & Practice	Theoretical: Early and physiological infertility in crossbreeding Application: Pollination and Insulation distances
6	Theoretical & Practice	Theoretical: Parental control in crossbreeding Application: Determination and duration of plant pollen release time
7	Theoretical & Practice	Theoretical: Back-crossing techniques and purpose Application: Manual pollination technique
8	Intermediate Exam	Midterm exam
9	Theoretical & Practice	Theoretical: Crossbreeding and selfing Application: Wind pollination
10	Theoretical & Practice	Theoretical: Protection of phases Application: Bee pollination technique
11	Theoretical & Practice	Theoretical: Hybrid technology Application: Land cultivation patterns in hybrid seed production
12	Theoretical & Practice	Theoretical: Fertilization biology in plants Application: Detection of pollen viability
13	Theoretical & Practice	Theoretical: Selection criteria in plant breeding Application: Morphological markers
14	Theoretical & Practice	Theoretical: Qualitative and quantitative properties in plant breeding Application: Morphological character separation
15	Theoretical & Practice	Variety registration procedures
16	Final Exam	Final exam

Workload Calculation

Activity	Quantity	Preparation	Duration	Total Workload
Lecture - Theory	14	6	2	112
Lecture - Practice	14	2	2	56
Midterm Examination	1	4	1	5

Courses	Inform	an a li a m	E a waa
			FOUL

Final Examination	1		4	1	5
Total Workload (Hours)				178	
[Total Workload (Hours) / 25*] = ECTS				7	
*25 hour workload is accepted as 1 ECTS					

 The importance of hybridization in plants Pure line, hybrid plant Fertilization biology 	
3 Fertilization biology	
5 1 1 1 1 1 5	
4 Hybrid seed production	
5 Dusting, Fertilization and Insulation	

Programme Outcomes (Agricultural Biotechnology Master)

1	Students learn various techniques and evaluates resources about agricultural biotechnology
2	Make the necessary projects in agricultural biotechnology and to conduct a study of the basic level independently
3	Students learns how to conduct a scientific research and prepares themself for the scientists in the direction of their ideals.
4	Students may reveal new ideas in social and scientific issues and can benefit from the ideas and produce something new winning independent and teamwork skills.
5	Students can use its products for the benefit of humanity, they can produce technology and collaborate with industry

Contribution of Learning Outcomes to Programme Outcomes 1: Very Low, 2: Low, 3: Medium, 4: High, 5: Very High

	L1	L2	L3	L4	L5	
P1	5	4	4	5	4	
P2	5	4	5	5	5	
P3	5	5	3	4	4	
P4	4	4	4	3	5	
P5	4	5	5	5	4	

