

AYDIN ADNAN MENDERES UNIVERSITY COURSE INFORMATION FORM

Course Title	Material Tech	nology						
Course Code	ADY221 Cou		Couse Level		Short Cycle (Associate's Degree)			
ECTS Credit 3	Workload	75 (Hours)	Theory	3	Practice	0	Laboratory	0
Objectives of the Course	It is aimed to adopt the principles of these derste student material technologies.							
Course Content Composite Materials / Atomic Structu Heat Treatments, Annealing / Harder Material Defects, Classification of Ma Areas, Metallic Materials / Ceramic M Methods.			g / Hardening tion of Mater	g, Surface l ials, Classi	Hardening, Ela ification of Mate	stic Deformation	ation, Plastic Defo laterials Used in T	ormation, echnical
Work Placement	N/A							
Planned Learning Activities and Teaching Methods			Explanation	n (Presenta	ation), Discussi	on, Individua	al Study	
Name of Lecturer(s)								

Assessment Methods and Criteria						
Method	Quantity	Percentage (%)				
Midterm Examination	1	40				
Final Examination	1	70				

Recommended or Required Reading

- 1 Smith, who w.çevir: Kınıkoğlu, N. " Materials Science and Engineering ", 2001.
- 2 Yüksel, M., Meran, C., Introduction to Material Science, Materials Science Series-Volume 2, MMO Publication, Publication No: MMO / 545, October 2010, Ankara

Week	Weekly Detailed Cour	y Detailed Course Contents					
1	Theoretical	Material Identification and Classification					
2	Theoretical	Materials Used in Technical Area					
3	Theoretical	Metallic Materials / Ceramic Materials / Polymer Materials					
4	Theoretical	Composite Materials / Atomic Structure / Crystal Defects					
5	Theoretical	Alloys, Steels and Standard Impressions					
6	Theoretical	Heat treatments applied to metal, receiving water					
7	Theoretical	Phase Laws and Diagrams					
8	Intermediate Exam	Midterm					
9	Theoretical	Fe-C Equilibrium Diagram and Phase Properties					
10	Theoretical	Elastic Deformation					
11	Theoretical	Plastic Deformation					
12	Theoretical	Material Testing, Destructive and Nondestructive Methods					
13	Theoretical	Material Testing, Destructive and Nondestructive Methods					
14	Theoretical	Corrosion Behavior and Protection Methods of Metals					
15	Final Exam	Final Exam					

Workload Calculation					
Activity	Quantity	Preparation Duration		Total Workload	
Lecture - Theory	14	0	3	42	
Midterm Examination	1	13	1	14	
Final Examination	1	18	1	19	
	75				
	3				
*25 hour workload is accepted as 1 ECTS					

Leari	ning Outcomes
1	General classification of material technology
2	Learning of operations in material technology
3	Applications in material technology
4	Mechanical, physical, chemical and thermal properties of materials
5	Material group to be used, reason for preference

Progr	ramme Outcomes (Emergency and Disaster Management)						
1	Improving the ability to cope with life-threatening emergencies						
2	The awareness of the necessity of lifelong learning and the ability to do so						
3	To be able to use basic science (Mathematics, Chemistry, Physiology, Anatomy etc.) in the field of Emergency Aid and Disaster Management						
4	Ability to analyze and interpret hazards and risks						
5	Sensitivity to global and local disasters						
6	Effective communication skills and foreign language knowledge						
7	Skills and creativity in interdisciplinary teams						
8	Providing physical and mental stability						
9	To be able to organize, search and rescue search and rescue operations						
10	To reach sufficient education level to understand the effects of disasters in universal and social dimensions						
11	To recognize the cooperation between actors and their actors in Emergency Aid and Disaster Management						
12	Emergency Aid and Disaster Management vocational, ethical and social responsibility awareness						
13	Ability to assume an educational role in Emergency Aid and Disaster Management						
14	To be able to use technology effectively in the field of Emergency Aid and Disaster Management						
15	Emergency Aid, Search-Rescue and Disaster Management as a whole and manage emergency situations and responsibility awareness						

Contribution of Learning Outcomes to Programme Outcomes 1:Very Low, 2:Low, 3:Medium, 4:High, 5:Very High

	L1	L2	L3	L4	L5
P1	1	5	1		
P2	1	1	1		
P3	1	1	1	4	5
P4	2	2	1	1	
P5	1	1	1		
P6	1	1	1	1	
P7	1	1	1		1
P8	2	2	4	2	
P9	1	2	2		
P10	1	1	1		5
P11	1	1	1		
P12	1	1	1		
P13	1	1	1		
P14	5	5	5	3	5
P15	1	5	5	3	

