

AYDIN ADNAN MENDERES UNIVERSITY COURSE INFORMATION FORM

Course Title Linear		Linear System	n Theory II							
Course Code		EEE502		Couse Level		Second Cycle (Master's Degree)				
ECTS Credit	8	Workload	200 (Hours)	Theory	3	Practice	0	Laboratory	0	
Objectives of the Course			This course provides an introduction to linear systems theory covering basic concepts such as system representation, stability, controllability, state feedback, state estimation, and realization.							
Course Content		variational equation system represent	uation, periodi sentations: equ nse, system f	cally time uivalence unction, s	e-varying diffe	rential equation e-invariance. D	s. Difference	stability of solution e equations. Dyna stem representati ontrollability, obse	amical ons:	
Work Placement N/A										
Planned Learning Activities and Teaching Methods				ation), Demonst Jal Study, Probl		ussion, Case Stud	ly, Project			
Name of Lecturer(s)										

Assessment Methods and Criteria

Method		Quantity	Percentage (%)	
Midterm Examination		1	30	
Final Examination		1	40	
Project		1	30	

Recommended or Required Reading

1 J.P. Hespanha. Linear Systems Theory . Princeton Press, 2009.

Week	Weekly Detailed Cour	se Contents
1	Theoretical	System Representation: State-space linear systems
2	Theoretical	System Representation: Linearization
3	Theoretical	System Representation: Transfer function
4	Theoretical	System Solution: Solutions to LTV systems
5	Theoretical	System Solution: Solutions to LTI systems
6	Theoretical	System Solution: Solutions to LTI systems (Jordan form)
7	Theoretical	Stability : Lyapunov stability
8	Intermediate Exam	Midterm Exam
9	Theoretical	Stability : Input-output stability
10	Theoretical	Controllability and State Feedback : Controllable and reachable subspaces
11	Theoretical	Controllability and State Feedback : Controllable systems
12	Theoretical	Controllability and State Feedback : Controllable decompositions
13	Theoretical	Controllability and State Feedback : Stabilizability
14	Theoretical	Observability and Output Feedback : Observability, Output feedback
15	Theoretical	Observability and Output Feedback : Minimal realizations
16	Final Exam	Final Exam

Workload Calculation

Activity	Quantity	Preparation	Duration	Total Workload
Lecture - Theory	14	5	3	112
Project	1	49	3	52
Midterm Examination	1	10	3	13

	motion	Form
Course		FUIII

Final Examination	1	20	3	23
Total Workload (Hours)				200
[Total Workload (Hours) / 25*] = ECTS		8		
*25 hour workload is accepted as 1 ECTS				

Learr	ing Outcomes		
1	To learn system representation.		
2	To learn system stability and controllability.		
3	To learn state feedback of the systems.		
4	To learn system's state estimation, and realization.		
5	To analysis system stability and controllability		

Programme Outcomes (Electrical and Electronics Engineering Master)

•	
1	Developing and intensifying knowledge that requires expertise in the area of Electrical-Electronics Engineering, and gaining the skills necessary to analyze and solve problems using this knowledge
2	Grasping the inter-disciplinary interaction related to Electrical-Electronics Engineering, interpreting and forming new types of knowledge by combining the knowledge from Electrical-Electronics Engineering and the knowledge from various other disciplines
3	Developing new approaches to solve the complex problems arising in Electrical-Electronics Engineering, coming up with solutions while taking responsibility and carrying out a specific study independently
4	Assessing the knowledge and skill gained in the area of Electrical-Electronics Engineering with a critical view
5	Transferring the current developments and one's own work in Electrical-Electronics Engineering, to other groups in written, oral and visual forms
6	The ability to control the collecting, interpreting, practicing and announcing processes of the Electrical-Electronics Engineering related to data taking into consideration scientific, cultural and ethical values and the ability to teach these values to others
7	Developing application plans concerning the subjects related to Electrical-Electronics Engineering and the ability to evaluate the end results of these plans within the frame of quality processes

Contribution of Learning Outcomes to Programme Outcomes 1:Very Low, 2:Low, 3:Medium, 4:High, 5:Very High

	L1	L2	L3	L4	L5	
P1	5	4	4	4	5	
P2	5	4	4	4	5	1
P3	4	4	5	5	4	
P4	5	5	4	5	4	
P5	4	3	5	4	5	
P6	5	5	4	5	5	
P7	4	4	4	4	5	

